
5. Shadow parameter adaptation5. Shadow parameter adaptation
• Shadow parameters:

• is the mean darkening 
ratio in gray scale
- Other parameters can be considered 
constant in the scene

• Adaptation rule:

6. 6. Foreground probabilitiesForeground probabilities
• Temporal statistics is not available

- In the literature uniform distribution is used pfg(s)=u, which 
produces low performance in several cases

• Preprocessing step:
- s is foreground  ↔ psh(s)<u  AND pbg(s)<u

• Assumption for a given foreground pixel:
- In the neighborhood there are some correctly classified 

foreground pixels
- The color of the pixel matches to the color distribution of the 

set of the neighboring foreground pixels.
• Approximation the color statistics of the probably 

foreground pixels in the neighborhood
- Close-in-color pixels to s are grouped in one weighted 

Gaussian term

7. 7. ResultsResults
• Different illumination conditions (surveillance videos)

• Segmentation results by the proposed MRF model, compared 
to the preliminary step, and a morphology-based approach

• Segmentation results compared to the previous MRF models

1. 1. Introduction, research goalsIntroduction, research goals
• Foreground detection under complex illumination 

conditions
• Assumptions

- Static cameras
- Background is stationary within a short observation period

• Properties of the scenes
- Dynamic changes of the background objects and the lightning 

conditions
- ‘Crowded’ and ‘empty’ scenarios alternate
- Presence of background colored/textured objects
- Shadow effects

• Considered features
- Pixel level information 
- Neighborhood connectivity

2. Segmentation model2. Segmentation model
• A likelihood classification model for pixel ‘s’

• Markov random field (Pott model)
- Video image: 2 dimensional grid of pixels
- ws: label of pixel s, wsЄ {bg, fg, sh}
- Field energy for each segmentation (global labeling):

3. Background model3. Background model
• Stauffer-Grimson algorithm

4. Shadow model4. Shadow model
• Classical model: shadow is approximated as a linear  

transform of background pixel values:

- This model assumes the background surfaces to be 
homogenous!

• Improved model: darkening ratio is a random variable
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Pixel value: xs

P( xs | s is in foreground)  =  pfg(s)

P( xs | s is in background)  =  pbg(s)

P( xs | s is shadowed )  =  psh(s)
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Histogram of the R1 values for non-
background points in  the images:
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Foreground detection rate:
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