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Abstract

In the paper we propose a novel multi-layer Mixed
Markov model for detecting relevant changes in registered
aerial images taken with significant time differences. The
introduced approach combines global intensity statistics
with local correlation and contrast features. A global en-
ergy optimization process simultaneously ensures optimal
local feature selection and smooth, observation-consistent
classification. Validation is given on real aerial photos.

1 Introduction

Automatic evaluation of aerial photo repositories is an
important field of research, since periodically repeated man-
ual processing is time-consuming and cumbersome in cases
of high number of images, and dynamically changing con-
tent. The paper deals with change detection in aerial im-
ages taken with many years time difference, probably in dif-
ferent seasons and in different lighting conditions. There-
fore, ‘simple frame differencing’ [2, 7] techniques cannot
be used, since the observed pixel levels may be significantly
different even in the unchanged areas. We focus on stan-
dard optical images, unlike [4], which uses multi tempo-
ral SAR imagery exploiting its insensitivity to atmospheric
conditions. We only assume that the database contains reg-
istered orthophotos. On the other hand, most previous mod-
els monitor purely natural [6] or urban [8] territories, or they
are dedicated to a specific task like detecting new built-in
areas [1] or destructions due to earthquakes [5]. As Fig. 1
and 3 show, the current photos include both built-in and un-
populated regions, including forests, fields and agricultural
lands as well, presenting various types of differences. Our
goal is detecting changes which are ‘unusual’ in a statisti-
cal manner. In a related PCA-based model [8], the authors
assumed that the ‘unimportant’ differences are caused by
alteration of illumination and camera settings. Since the

above effects influence the observed sensor values in a mul-
tiplicative or additive fashion, they modelled the relation-
ship of the corresponding pixel levels within the unchanged
regions by a globally constant linear transform. Similar ap-
proaches can be also found in [7]. However, these models
disregard that the scene may ‘regularly’ alter as well, pri-
marily due to the seasonal vegetation changes. Moreover,
in agricultural areas which follow crop rotation, the shape
and arrangement of the neighboring tracks of a plough-land
may be changed significantly. We will show that the regu-
larity of these changes also can be measured in a statistical
way, although they may cause significant deviations from
the estimated linear approach.
In the paper we propose a robust multi-layer Mixed Markov
model [3] to tackle the above change detection problem.
We identify the changes through complementary features:
global intensity statistics and local correlation. A contrast
based selection process is responsible for locally choos-
ing the more reliable feature in the different image regions,
while a smooth change map is ensured using local connec-
tivity constraints.

2 Image model and feature extraction

Let G1 and G2 be the two registered images which we
wish to compare. G1 and G2 have an identical pixel lattice
S. The gray values are denoted by g1(s) and g2(s) for a
pixel s ∈ S of G1 and G2, respectively. Our first task is
to extract local features at each s ∈ S which give us in-
formation for classifying s as a changed (ch) or background
(bg) i.e. unchanged surface point. Taking a probabilistic ap-
proach, we consider the ch/bg classes as random processes
generating the features according to different distributions.
We start our investigations in the joint intensity domain of
the two images. Here, instead of prescribing a global lin-
ear transform between g1(s) and g2(s) for the background
areas [8], we give a multi modal description of the ob-
served data. We approximate the 2-D histogram of the
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Figure 1. Feature selection: a) G1 image, b) G2 image, c) intensity based change detection, d) cor-
relation based change detection, e) hg and hc histograms f) local contrast based segmentation, g)
ground truth h) change detection with combined features, without considering local connectivity

g(s) = [g1(s), g2(s)]T vectors by a mixture of Gaussians
distribution. In this way, we measure which intensity val-
ues occur often together in the two images. Thereafter,
the probability of the g(s) observation in the background
is calculated as: P

(
g(s)

∣∣bg
)

=
∑K

i=1 κi · η
(
g(s), µi,Σi

)
,

where η(.) denotes a two dimensional Gaussian density
function with µi mean vector and Σi covariance matrix,
while the κi terms are positive weighting factors. Using
a fixed K = 5, the distribution parameters are estimated
automatically by the conventional EM algorithm. On the
other hand, any g(s) value may occur in the changed re-
gions, hence the ‘ch’ class is modeled by a uniform density:
P

(
g(s)

∣∣ch)
= u. Next, we demonstrate the limitations of

this feature. We derive the segmentation in Fig. 1(c) as the
maximum likelihood (ML) estimate, where the label of s
is φg(s) = argmaxψ∈{ch,bg}P

(
g(s)

∣∣ψ)
. One can observe

that this multi-Gaussian intensity based approach (MGI) er-
roneously marks several unaltered regions as changes com-
pared to the ground truth [Fig. 1(g)]. However, the miss-
classifications are mainly limited to highly textured regions
(e.g. buildings and roads) since the g(s) gray values occur-
ring there are less frequent in the global image statistics.
We derive the next feature, c(s) as the correlation between
the rectangular v × v neighborhoods of s in G1 and in G2

(used v = 17). Pixels with higher c(s) values lie more likely
in unchanged image regions. Our experiments showed that
the P (c(s)|bg) and P (c(s)|ch) probabilities can be approx-
imated by different Gaussian distributions. Note that in it-
self, a simple ML classification based on c(.) results in a
fairly poor segmentation φc [see Fig. 1(d)]. However, we
can see that g(s) and c(s) are efficient complementary fea-
tures. In low contrasted image regions, where the noisy c(s)
may be irrelevant, the decision based on g(s) is reliable. In

textured areas one should choose c(s) instead of g(s).
We formulate the contrast based feature selection in a prob-
abilistic manner. Let νi(s) be the local contrast at s in Gi

(i = 1, 2), that is measured by the variance of the gray lev-
els in the neighborhood of s. Let be ν(s) = [ν1(s), ν2(s)]T .
Using a few manually segmented training images, one can
derive a 2-D histogram hg which statistically measures the
reliability of the decision based on g(s) as a function of
ν(s). We calculate hc in a similar manner, for the c(.)
feature. As Fig. 1(e) shows, the normalized hg and hc

histograms can be efficiently approximated by 2-D Gaus-
sian density functions: P

(
ν(s)|hψ

)
= η

(
ν(s), µψ,Σψ

)
,

ψ ∈ {g, c}. Thereafter, we create a contrast map as φν(s) =
argmaxψ∈{g,c}P

(
ν(s)|hψ

)
[see Fig. 1(f): class ‘c’ marked

with white], and the combined map φ∗, where φ∗(s) =
φg(s) if φν(s) =‘g’; φ∗(s) = φc(s) if φν(s) =‘c’ [Fig.
1(h)]. Let observe that φ∗ is a more improved approxi-
mation of the ground truth, however, it is still quite noisy.
Therefore, based on the above investigations, we introduce
a robust segmentation model in the following.

3 A Mixed Markov Random Field image seg-
mentation model

Mixed Markov models [3] extend the modeling capabil-
ities of Markov random fields: they enable using both static
and observation-dependent dynamic links between the pro-
cessing nodes. We can take here the advantage of this prop-
erty, since the ν(s) feature plays a particular role: it may
locally switch ON and OFF the g(s) respectively c(s) fea-
tures into the integration procedure. We consider our task
as a composition of four interactive segmentation processes
[analogously to Fig. 1(c), (d), (f) and (h)]. Thus we map the



Figure 2. (I) intra- and (II.a,II.b) inter-layer con-
nections in G (edges denoted by continuous
lines, address pointers by dotted arrows).

problem to a graph G with four layers: Sg, Sc, Sν and S∗.
We assign to each pixel s ∈ S a unique graph node in each
layer: e.g. sg is the node corresponding to pixel s on the
layer Sg. Denote sc ∈ Sc, sν ∈ Sν and s∗ ∈ S∗ similarly.
We introduce a labeling random process, which assigns a
label ω(.) to all nodes of G. As usual, graph edges express
direct dependencies between the corresponding node labels.
Our approach exploits that Mixed Markov models distin-
guish two types of processing units, called regular and ad-
dress nodes [3]. The Sg, Sc, and S∗ layers contain regular
nodes, where the label denotes a possible ch/bg segmenta-
tion class: ∀s ∈ S, i ∈ {g, c, ∗} : ω(si) ∈ {ch, bg}. For
each s, ω(sg) resp. ω(sc) corresponds to the segmentation
based on the g(s) resp. c(s) feature; while the labels at the
S∗ layer present the final change mask.
On the other hand, the Sν layer contains address nodes,
where for sν ∈ Sν the label ω(sν) is a pointer to a regu-
lar node of G. In contrast with static edges, address pointers
represent dynamic connections between the nodes.
We use the following notations: ω̃(sν) := ω(ω(sν)) is
the label of the (regular) node addressed by sν , and ω =
{ω(si)|s ∈ S, i ∈ {g, c, ν, ∗}} denotes a global labeling.
Let F = {Fs|s ∈ S} be the global observation, where Fs

is the union of the g(s), ν(s) and c(s) local features ex-
tracted at pixel s. By definition of Mixed Markov models
[3], (static) edges may link any two nodes, and the a poste-
riori probability of a given global labeling ω is given by:

P (ω|F) = α
∏

C∈C
exp

(
− VC (ωC , ων

C ,F)
)
, (1)

where C is the set of cliques in G. For C ∈ C: ωC =
{ω(q)|q ∈ C} and ων

C = {ω̃(sν)
∣∣sν ∈ Sν ∩ C}. VC is a

C → R clique potential function, which has a ‘low’ value if
the labels within the set ωC ∪ ων

C are semantically consis-
tent, while VC is ‘high’ otherwise. Scalar α is a normalizing
constant, which is independent of ω. Note that we will also
use singleton cliques which contain single nodes.
Next, we define the cliques of G and the corresponding
VC clique potential functions. The observations affect the
model through the singleton potentials. As we stated previ-

ously, the labels in the Sg and Sc layers are directly influ-
enced by the g(.) respectively c(.) values, while the labels
in S∗ have no direct links with these measurements. For
this reason, let be V{sg} = − log P

(
g(s)

∣∣ω(sg)
)
, V{sc} =

− log P
(
c(s)

∣∣ω(sc)
)

and V{s∗} ≡ 0. Note that the above
distributions were already defined in Section 2, and V{sν}
will be later given.
For presenting smooth segmentations, we put connections
within each layer among node pairs corresponding to neigh-
boring pixels on the S image lattice (see Fig. 2-I). De-
note the set of the resulting intra-layer cliques by C2. The
prescribed potential function of a clique in C2 will penal-
ize neighbouring nodes having different labels. Assum-
ing r and s to be neighbouring pixels on S, the poten-
tial of the doubleton clique C2 = {ri, si} ∈ C2 for each
i ∈ {g, c, ν, ∗} is calculated using a constant ϕi > 0 as:

VC2

(
ω(si), ω(ri)

)
=

{ −ϕi if ω(si) = ω(ri)
+ϕi if ω(si) 6= ω(ri)

We continue with the description of the inter-layer inter-
actions. Based on previous investigations, ω(s∗) should
mostly be equal either to ω(sg) or to ω(sc), depending on
the observed ν(s) feature. Hence, we put an edge among
s∗ and sν , and prescribe that sν should point either to sg

or to sc (Fig. 2-II.a and II.b). As for the singleton po-
tentials in the Sν layer, if sν points to sψ|ψ∈{g,c}, let be
V{sν} = − log P

(
ν(s)

∣∣hψ

)
. On the other hand, we get

the potential of the inter-layer clique C3 = {s∗, sν} with
a fixed ρ > 0 as

VC3

(
ω(s∗), ω̃(sν)

)
=

{ −ρ if ω(s∗) = ω̃(sν)
+ρ otherwise

Finally, based on (1), the ω̂ maximum a posteriori estimate
of the optimal global labeling, which maximizes P (ω̂|F)
(hence minimizes − log P (ω̂|F)) can be obtained as:

ω̂ = argminω∈Ω

∑

s∈S; i

V{si}
(
ω(si),Fs

)
+

+
∑

{s,r}∈C2; i

VC2

(
ω(si), ω(ri)

)
+

∑

s∈S

VC3

(
ω(s∗), ω̃(sν)

)

(2)
where i ∈ {g, c, ν, ∗} and Ω denotes the set of all the possi-
ble global labelings. The final segmentation is taken as the
labeling of the S∗ layer.

4 Experiments

The evaluations are done through manually generated
ground truth masks using different optical aerial image pairs
with 1.5m/pixel resolution. The photos were provided by
the Hungarian Institute of Geodesy, Cartography and Re-
mote Sensing and Google Earth. The model parameters are



Figure 3. Detected changed regions (with white) in three sample image pairs, using the MGI ap-
proach, the PCA-method [8], the proposed Mixed Markov model (MM), and ground truth.

MGI PCA Prop. MM
F -measure 0.478 0.605 0.844

Table 1. Quantitative validation results

estimated over a set of training images and we examine the
quality of the segmentation on different test pairs. To find a
good suboptimal labeling according to (2), we use the mod-
ified Metropolis optimization method like in [1, 2].
We have compared the results of the proposed Mixed
Markov model to the multi-Gaussian intensity (MGI) based
change detection (see Sec. 2), and to the PCA model [8].
The numerical evaluation metric is the F measure, which is
the harmonic mean of precision and recall of the detected
changed pixels compared to the ground truth. Results are in
Table 1. Comparative segmentations of three selected im-
age pairs from the test database are shown in Fig. 3. The
experiments show the superiority of the proposed model.

5 Conclusion

This paper has addressed the detection of statistically un-
usual changes in aerial image pairs taken with a significant
time difference. A novel Mixed Markov model has been
proposed, which integrates the information from three dif-
ferent observations. The efficiency of the method has been
validated through real-world aerial images, and its behav-
ior versus two reference methods has been quantitatively

and qualitatively evaluated. The authors would like to thank
Josiane Zerubia from INRIA for her kind advices, and the
MUSCLE Shape Modeling E-Team for financial support.
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