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Introduction

Introduction

Image/video based computer systems - digital visual information
streams

Video surveillance for police
Cartography and remote sensing - aerial image analysis

Change detection - goals
Decreasing the number of interesting photos or video frames
Extracting object descriptors for higher level image processing
modules
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Introduction

Foreground and Shadow Detection in Video
Sequences
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Introduction

Object Motion Detection in Image Pairs Taken by
Moving Airborne Vehicles...

Stereo reconstruction of static scenes
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Introduction

... and Processing Low Frame-Rate Aerial Videos

Large and unpredictable camera motion

Low frame-rate

Frame differencing instead of video based techniques
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Introduction

Detecting Built-in Changes in Image Pairs Taken with
Large Time Differences

Comparing registered photos (Institute of Geoscience,
Cartography and Remote Sensing)
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Introduction

Image Segmentation with Markov Random Fields

2-D pixel lattice → graph: S = {s}
nodes: image points (s is a pixel)
edges: interactions → cliques

Goal: generate a K -colored segmented image, with a task
dependent label set L = {C1, . . . ,CK }

ωs ∈ L: label of pixel s which mark its segmentation class
Task 1: K = 3; C1=foreground, C2=background and C3=shadow.

Segmentation with Markov Random Fields (MRF):
fs: local feature observed at pixel s (color, texture etc.)

Pixels’ feature-values should fit the class models specified by their
label
Classes are described by feature distributions or probability density
functions e.g. P(fs|ωs = background).

Segmented image is “smooth”: we penalize, if two neighboring
pixels have different labels
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Introduction

Image Segmentation with Markov Random Fields

Global labeling: ω = {ωs|s ∈ S}}

Observation process: F = {fs|s ∈ S}

MAP estimation of the optimal global labeling:

ω̂ = argmax
ω∈ΩP(ω|F)

where Ω denotes the set of all the possible global labelings.
(Hammersley-Clifford theorem): P(ω|F) can be factorized into
individual terms whose domains are the cliques of the graph.

P(ω|F) ∝
∏

s∈S

P(fs|ωs)

︸ ︷︷ ︸
P(F|ω)

·
1
Z

exp

(

−
∑

C∈C

VC(ω)

)

︸ ︷︷ ︸
P(ω)

where C is an arbitrary clique and VC is the potential of C.
MRF energy function: − log P(ω|F)
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Bayesian Foreground and Shadow Detection in Video Scenes
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Bayesian Foreground and Shadow Detection in Video Scenes

Thesis Group 1: Bayesian Foreground and Shadow
Detection in Video Scenes

I have worked out a novel spatio-temporal probabilistic model
based on MRF for foreground - background separation and cast
shadow detection in video frames. I have experimentally shown
that the proposed method outperforms the recently published
models with the same goals and scene assumptions.
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Bayesian Foreground and Shadow Detection in Video Scenes

Bayesian Foreground and Shadow Detection in Video
Scenes

Likelihood model of pixel s:

Field energy:

∑

s∈S

− log P
(
fs | ωs

)
+
∑

r ,s∈C

Θ (ωr , ωs)

Θ(ωr , ωs) =

{
−δ if ωr = ωs

+δ if ωr 6= ωs
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Bayesian Foreground and Shadow Detection in Video Scenes Shadow Model

Thesis 1.1: Shadow Model

I have proposed a novel statistical and adaptive color model for
detecting cast shadows. I have shown that the procedure is more
efficient than using previous approaches if the scene reflection
properties are not ideally Lambertian.

Photometrical description of the measured color as a function of
illumination e(λ, s)

g(s) =

∫
e(λ, s)ρ(λ, s)ν(λ)dλ

Former similar models: simplifying assumptions

uniform illumination
purely Lambertian reflecting surfaces
decreased performance in complex scenarii

Proposed approach: global statistical characterization of pixel level,
physical shadow descriptors
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Bayesian Foreground and Shadow Detection in Video Scenes Shadow Model

Foundations of the Shadow Model

Constant ratio model (noise sensitive):

gshadow(s) = A · gbackground(s)

Proposed approach (1D visualization):

ψ(s) = g(s)/gbackground(s)

spatiotemporal histograms of shadow- and foreground ψ(s) values:

0  0.5 1  1.5 0  0.5 1  1.5

Approximating the shadow domain: Gaussian density functions

Color images: ψ(s) 3D vector, 3D Gaussian density
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Bayesian Foreground and Shadow Detection in Video Scenes Shadow Model

Experimental Validation of the Shadow Model
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Bayesian Foreground and Shadow Detection in Video Scenes Foreground Model

Thesis 1.2: Foreground Model

A novel foreground description has been given based on spatial
statistics of the nearby pixel values. I have shown that the intro-
duced approach enhances the detection of background or sha-
dow-colored object parts, even in low and/or unsteady frame rate
videos.

Predicting the colors in the foreground

irrelevant temporal statistics
uniform color model - weak to detect fine differences
spatial statistics: in the neighborhood of a foreground pixel other
foreground pixels are expected with similar color
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Bayesian Foreground and Shadow Detection in Video Scenes Foreground Model

Introduction of the Foreground Model

Estimation of the color statistics of the probably foreground pixels
in each neighborhood
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Bayesian Foreground and Shadow Detection in Video Scenes Foreground Model

Introduction of the Foreground Model

Example results:
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Bayesian Foreground and Shadow Detection in Video Scenes Microstructure Model

Thesis 1.3: Microstructure Model

I have given a probabilistic model of the microstructural responses
in the background and in the shadow. Thereafter, I have comple-
ted the MRF segmentation model with microstructure analysis.
The proposed adaptive kernel selection strategy considers the
local background properties. I have shown via synthetic and real-
world examples, that the improved framework outperforms the pu-
rely color based model, and methods using a single kernel.

goal: considering textural differences in the separation
texture distribution parameters can be analytically estimated
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Bayesian Foreground and Shadow Detection in Video Scenes Microstructure Model

Effects of the Microstructure Model
Synthesised Example

Input image - Fig. a)

homogenous but noisy
foreground (light rectangle in
the middle)
inhomogeneously textured
background

Results:
b) only intensity based
separation
c) intensity + edge based
model
d) proposed adaptive kernel
selection
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Bayesian Foreground and Shadow Detection in Video Scenes Microstructure Model

Effects of the Microstructure Model
Real Image Examples

Improvements in regions of finely textured details
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Bayesian Foreground and Shadow Detection in Video Scenes Color Space Selection

Thesis 1.4: Color Space Selection for Shadow
Detection

I have experimentally shown that among the widespread color
spaces, the CIE L*u*v* model is the best for cast shadow
detection, both using an elliptical separation in the space of the
pixel-level descriptors and regarding a color space independent
extension of the proposed MRF-segmentation model.
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Bayesian Foreground and Shadow Detection in Video Scenes Color Space Selection

Shadow Descriptors in Different Color Spaces

C C C1 2 3 HSV RGB CIE L*u*v*
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plots:
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Foreground:

Csaba Benedek (PPKE-ITK, SZTAKI) Change detection with MRFs Ph.D. defense, 2008 23 / 51



Bayesian Foreground and Shadow Detection in Video Scenes Color Space Selection

Comparing Color Spaces in the Proposed MRF
Framework
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Bayesian Foreground and Shadow Detection in Video Scenes Evaluation

Quantitative Evaluation of the Results from Thesis
Group 1.

2 benchmark sequences and 3 real surveillance videos, in
aggregate 861 evaluated frames
Metric: F -measure (harmonic mean of recall and precision of
foreground detection)
Notation: SM = shadow model, FM = foreground model

Laboratory Highway Entrance am Entrance noon Entrance pm
0.6

0.7

0.8

0.9

1

 

 

Constant SM + uniform FM
Constant SM + proposed FM
Proposed SM + uniform FM
Proposed SM + proposed FM
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Thesis Group 2.

Thesis Group 2: Three-Layer Markovian Models

I have developed novel three-layer MRF models for object motion
detection in unregistered aerial image pairs and built-in change
detection in aerial photos captured with several years time
difference. I have experimentally validated the proposed models.
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Object Motion Detection in Aerial Image Pairs
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Object Motion Detection in Aerial Image Pairs

Thesis 2.1

I have developed a novel statistical model for object motion
detection in image pairs captured by moving airborne vehicles. I
have experimentally shown that the proposed approach
outperforms previous models which use purely linear image
registration techniques or local parallax removal.
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Object Motion Detection in Aerial Image Pairs Model Definition

Feature Extraction

1. feature: gray level difference

d(s) = x̃2(s) − x1(s)

2. feature: local correlation peak
value c(s)

Pixel s belongs to background, if:

|d(s)| < T1 OR c(s) > T2

Spatial smoothing is necessary - composite Markovian model due
to feature integration
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Object Motion Detection in Aerial Image Pairs Model Definition

3-Layer Markov Random Field Model

Classes: object motion (i.e.
foreground), background
Layers:

1. observation layer: MRF based on
intensity difference
Segmentation layer: final result by
feature integration
2. observation layer: MRF based on
the correlation peak feature

Singletons
Labels in the observation layers should be consistent with local
features d(s) resp. c(s)

Intra layer connections
Smooth segmentation in each layer

Inter layer interactions
Syncronizing the segmentations by label fusion.
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Object Motion Detection in Aerial Image Pairs Model Definition

Field Energy Optimization

ω̂ = argmin
ω∈Ω

{
−
∑

s∈S log P(d(s)|ω(sd )) −
∑

s∈S log P(c(s)|ω(sc))+

+
∑

{r i ,si}∈C2

β · δ
(
ω(r i), ω(si )

)
+
∑

s∈S

I
(
ω(sd ), ω(sc), ω(s∗)

)}
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Object Motion Detection in Aerial Image Pairs Experiments

Test Datasets and Reference Methods

Database: 83 image pairs from 3 test sets

Comparison to manual segmentation

Metric: F -measure

Reference methods:

FFT similarity matching
Method of Farin and With , ICIP 20051

Supervised affine matching

1D. Farin and P. With, “Misregistration Errors in Change Detection Algorithms and
How to Avoid Them,” in Proc. International Conference on Image Processing (ICIP),
vol. 2, pp. 438-441, Genoa, Italy, Sept. 2005.
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Object Motion Detection in Aerial Image Pairs Experiments

Results
First image

Second image

Ground truth

FFT similarity

Farin’s method

Supervised affine

3-layer MRF
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Object Motion Detection in Aerial Image Pairs Experiments

Results in ‘Balloon 1’ Test Set
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Object Motion Detection in Aerial Image Pairs Experiments

Quantitative Results (F -measure)

balloon1 balloon2 Budapest
0.4
0.5
0.6
0.7
0.8
0.9

 

 

FFT similarity 
Farin’s method
Supervised affine
 3−layer MRF
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Detection of Changes in Built-in Areas

Thesis 2.2

I have developed a Markovian framework for structural change
detection in aerial photos captured with significant time difference.
I have shown through an application on built-in change detection
that connecting the segmentations of the different images via pi-
xel-level links results in an efficient region based change detection
method, which is robust against the noise and incompleteness of
the class descriptors.
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Detection of Changes in Built-in Areas

Structural Change Detection in Aerial Images
Captured with Large Time Differences

Preliminary registered aerial photos

5-20 years difference

Pixel-level comparison is irrelevant
Region based change detection

Segmenting the images with the
same clusters: built-in and natural
areas
Detecting regions with changed
clusters
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Detection of Changes in Built-in Areas

Feature Selection for Built-in Change Detection

“Edge-density” textural
descriptor

Edge map:

E = {E(s)|s ∈ S}

Edge density map:

T (s) =
1

(2W + 1)2

∑

|r−s|≤W

E(r)

In built-in areas the edge
density is high

Region borders are
ambiguous
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Detection of Changes in Built-in Areas

Built-in Change Detection: Results
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Answers for Reviewer’s Comments

Kernel Size Used for Texture Analysis

Question: Can be the quality of segmentation enhanced by using
5 × 5 or larger kernels to compute the microstructural responses
instead of 3 × 3 kernels?

Effects of using larger kernels:

⊕ improved detection of the internal parts of object/background
regions

	 increased artifacts appear near to the class-boundaries

Optimal kernel size depends on:

Image resolution
Size of objects

In 320 × 240 video frames 3 × 3 proved to be a good comprise.
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Answers for Reviewer’s Comments

Segmenting X-ray Images with the Proposed
Markovian Structure
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Answers for Reviewer’s Comments

Experimental Validation of the Stochastic Optimizer
Repeatability of the experiments for the 3-layer MRF model

Qualitative results of 7 different pseudo-stochastic optimization
experiments with the same image pair, same parameters and
relaxation settings, but different seeds for the RANDOMIZE calls
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Answers for Reviewer’s Comments

Experimental Validation of the Stochastic Optimizer
Repeatability of the experiments for the 3-layer MRF model

Quantitative results of 100 different pseudo-stochastic optimiza-
tion experiments with the same image pair, same parameters and
relaxation settings, but different seeds for the RANDOMIZE calls

measured mean value of F -rates: 0.8635
measured standard deviation: 0.0057
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Answers for Reviewer’s Comments

Experimental Validation of the Stochastic Optimizer
Effects of changing the cooling factor and the iteration number
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Study on the convergence speed
obtained at c=0.96:

Performance as a function of the cooling
factor (c), obtained at convergence:

Number of MMD iterations till convergence
as a function of the cooling factor (c):
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