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Abstract

In this thesis novel probabilistic models are proposed for three differ-

ent change detection tasks of computer vision, primarily focusing on

applications from video surveillance and aerial exploitation. The sur-

veys are performed in a coherent Markov Random Field (MRF) seg-

mentation framework, but the introduced models face different prac-

tical challenges such as shadow effects, image registration errors or

presence of noisy and incomplete concept descriptors. Contributions

are presented in efficient feature extraction, probabilistic modeling of

natural processes and feature integration via local innovations in the

model structures. We show by several experiments that the proposed

novelties embedded into a strict mathematical toolkit can significantly

improve the results in real world test images and videos.
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Chapter 1

Introduction

Change detection is an important early vision task in several computer vision

applications. Shape, size, number and position parameters of the relevant scene

objects can be derived from an accurate change map and used among others in

video surveillance [18][19], aerial exploitation [19], traffic monitoring [20], urban

traffic control [21], forest fire detection [22], detection of changes in vegetations

[23], urban change detection [24] or disaster protection [25].

As the large variety of applications shows, change detection is a wide concept: dif-

ferent classes of algorithms should be separated depending on the environmental

conditions and the exact goals of the systems. This thesis attacks three selected

tasks from the problem family. Although the abstract aim (indicating some kind

of changes between consecutive images in an image sequence) and the applied

mathematical tools (statistical modeling, feature differencing, Markov Random

Fields) are similar for the introduced three problems, the further inspections will

show that the solutions must be significantly different. We begin with a short

introduction of the three tasks. (See also Fig 1.1.)

• Task 1: Separation of foreground, background and moving shadows in

surveillance videos captured by static cameras. In this environment, video

streams are available recorded from a fixed camera position, which enables

building statistical background and shadow models based on temporal mea-

surements. The goal is to extract the accurate shapes of the objects or

object groups for further post processing.

1
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In surveillance scenes, efficient shadow description and foreground model-

ing raises serious challenges, due to the presence of camera noise, various

reflecting surfaces, low frame rate or background colored object parts. This

thesis introduces a model, which considers such practical conditions, mean-

while it also exploits the advantages of robust Bayesian image segmentation

techniques.

• Task 2: Moving object detection in airborne images captured by moving

cameras. In this case, image pairs are only provided instead of videos. The

task needs an efficient combination of image registration for camera motion

compensation and frame differencing. However, using techniques from 3D

geometry, perfect image registration cannot be generally performed. The

proposed approach estimates the moving object regions through a statistical

model optimization process.

• Task 3: Detecting built-in changes in registered airborne images captured

with significant time difference. This task needs a more sophisticated ap-

proach than simple pixel value differencing, since due to seasonal changes or

altered illumination, the appearance of the corresponding unchanged terri-

tories may be also significantly different. A new region based change detec-

tion model will be presented, which is robust against noise and incomplete

description of the ‘changed’/‘unchanged’ concepts.

Formally, the inputs of the above change detection tasks are digital images of the

same size, and the aim is to generate a segmented image, where each pixel is as-

signed to a class (or cluster). In Task 1, we distinguish three classes: foreground,

background and shadow. On the other hand, Task 2 is a binary segmentation

problem with classes: moving object and background, while Task 3 uses also two

clusters: built-in and natural areas.

In a practical point of view, the goal of the methods in this thesis is presenting

general pre-processing steps for different families of high-level applications. Thus,

the proposed models do not contain complex object shape features [26] or object

descriptors [27] which can be highly specific for a given scene. Low level local

features are extracted around each pixel, which are derived from the color values
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Figure 1.1: Demonstration of the expected results regarding the three tasks. In the
change maps white pixels mark the foreground, while black ones the background regions.
In task 1, we also have to indicate the moving shadows (with grey).

Introduction/IntroductionFigs/taskAllDemo.eps
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observed at the pixel or over its neighborhood. The segmentation is primar-

ily based on these local measurements, which provide a posteriori (observation

dependent) information for the process. To decrease the inaccuracies, a priori

constraints are used as well: we prescribe that the pixels corresponding to the

same class should form smooth connected regions in the cluster-map. Note that

in most cases, the a priori information is also crucial, since the feature domains

of the different clusters may be strongly overlapped, thus several pixels could be

misclassified using only the per pixel descriptors.

For similar segmentation problems different solution schemas are proposed in the

literature. Here, using the terminology of [28], we distinguish deterministic meth-

ods (e.g. [29]), which use on/off decision processes at each pixel, and statistical

approaches (see [30]) which contain probability density functions to describe the

class-memberships of a given image point. Note that per pixel decisions often can

be interpreted by probabilistic functions as well, but a more important difference

is observable in the sequence of the subtasks. Deterministic procedures consist of

two consecutive levels: first, the algorithm compares the current pixel values to

the class models, and classifies the individual nodes independently. After process-

ing the whole image, morphology [31, pp. 449–490]1 can be used to ensure the a

priori local connectivity constraint inside the different regions. For example, one

can simply choose as the label of a given pixel the most frequent label in its 5×5

neighborhood. As a main drawback here, morphology only considers the current

labels in the post processing phase and ignores the information, how ‘sure’ was

the decision of the matching steps at the different pixel positions.

An alternative segmentation schema is a statistical Bayesian approach. The seg-

mentation classes are considered to be stochastic processes which generate the

observed pixel values according to locally specified distributions. The spatial in-

teraction constraint of the neighboring pixels is also modelled in a probabilistic

way by Markov Random Fields (MRF) [32]. Thus, a global probability term is

assigned to all possible segmentations of a given input, which encapsulates both

the a priori and a posteriori knowledge. Finally, an optimization process attempts

to find the global labeling with the highest confidence.

1Chapter 15: Morphological Image Processing



5

On its positive points, Bayesian image segmentation approaches are robust and

well established for many problems [33]. MRFs have been also widely used for

different change detection tasks e.g. in [34][35][36][37][38][39][40][41]. However, as

it will be explained in Chapter 2 in details, the MRF concept offers only a general

framework, which has a high degree of freedom. Especially, two key issues should

be appropriately chosen regarding a given task. The first one is extracting effi-

cient features and building a proper probabilistic description of each class. The

second key point is developing an appropriate model structure, which consists

of simple interactive elements. The arrangement and dialogue of these units is

responsible for smoothing the segmented image or integrating the effects of dif-

ferent features.

As for the contributions of this thesis, the novelties regarding task 1 purely lies

in how the a posteriori (data dependent) probabilistic terms are constructed. A

traditional model structure is meanwhile used [42]. On the other hand, the main

contribution regarding task 2 and 3 is constructing a novel three-layer MRF

structure, which integrates different but in themselves simple features.

This thesis uses the basic concepts and results of probability theory (e.g. random

variables, probability density functions, Bayes rule etc.), which are supposed to

be familiar for the Readers. An extensive introduction to this topic is given e.g.

in [43] or in [44]. However, we have collected into Appendix A a few important

mathematical definitions and consequences, which focus on some aspects of this

work, while theorems referred in the text are presented as well.

The outline of the thesis is as follows. Chapter 2 offers a short introduction to

image segmentation approaches via Markov Random Fields. The contributions

of this thesis are presented in Chapters 3-6. Each of these chapters is dedicated

to a separate problem to solve, which is introduced in the beginning of the sec-

tion. As for details, in Chapter 3 a novel probabilistic approach is proposed for

foreground and shadow detection in video surveillance. Chapter 4 deals with

the problem of appropriate color space selection for cast shadow detection in the

video frames (both issues correspond to task 1 ). In Chapter 5, focusing on the

challenges of task 2, we introduce a Bayesian model for object motion detection

in airborne image pairs attempting to remove registration and parallax error.
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Finally, we propose a model framework in Chapter 6 for structural change detec-

tion and show its applicability to recognize newly appeared built-in areas (task

3 ). A short conclusion and a summary of scientific results is given at the end.

The thesis contains two appendices as well. As mentioned earlier, Appendix A

summarizes a few elementary results of probability theory which may help to

understand some parts of the work. Appendix B offers a detailed overview on the

used abbreviations and notations.



Chapter 2

Markov Random Fields in Image
Segmentation

A digital image is defined over a two dimensional pixel lattice S having a finite

size W ×H. Image segmentation can be formally considered as a labeling task

where each pixel gets a label from a J-element label set (corresponding to J dif-

ferent segmentation classes), or, in other words, a J-colored image is generated

for a given input.1 As mentioned in the introduction, statistical methods will be

used. Hence, based on the current observations, knowledge about the classes and

a priori constraints, the segmentation model must assign a fitness (or probabil-

ity) value to all the JW·H possible segmentations, by the way that higher fitness

values correspond to semantically more correct solutions.

The overcome the course of dimensionality, the fitness functions are usually mod-

ularly defined: they can be decomposed into individual subterms, and the domain

of each subterm consists only of a few pixels. In this way, if we change a label

of a single pixel, we should not re-calculate the whole fitness function, only those

subterms, which are affected by the selected pixel. This property significantly

decreases the computational complexity of iterative labeling optimization tech-

niques [32][50].

An efficient segmentation approach can be based on a graph representation of

the images, where each node of the graph corresponds to a pixel. We define

edges between two nodes, if the corresponding pixel labels influence each other

1In our tasks we will use J = 3 or J = 2 classes.

7
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directly, i.e. there is a subterm of the fitness function which depends on both

pixels. For example, to ensure the spatial smoothness of the segmented images,

one can prescribe that the neighboring pixels should have the same labels with

high confidence [32][42].

Another important issue is creating interaction between different segmentation

(sub)tasks. Multi-layer approaches have been proposed for such problems [45][46]

[47][48], where each segmentation forms a 2D layer, which is considered as sub-

graph of the 3D multi-layer model. Besides the intra-layer connections (edges),

which may have the same role as in the single-layer case, one can define inter-layer

edges expressing direct links between nodes of different segmentations.

In this thesis, we will use both a conventional single-layer model (Chapters 3

and 4), and a novel multi-layer approach. Moreover, the proposed three-layer

structure will be applied in two essentially different ways. In Chapter 5, we will

perform fusion of interactive segmentations corresponding to the same input from

different points of views. On the other hand, in Chapter 6 links will be created

between segmentations of different images based on the same features.

Since the seminal work of Geman and Geman [32], Markov Random Fields

(MRFs) offer powerful tools to ensure contextual classification. In the following

part of this chapter we give the formal definitions and algorithmic steps regarding

MRF based segmentation. To jointly handle the single- and multi-layer models,

we will define MRF-s on graphs, following the terminology of [44]. A special case

will be given at the end of this chapter.

2.1 Markov Random Fields and Gibbs Poten-

tials

We begin with the formal definitions and notations used in MRF based image

segmentation.

Let G = (Q, ε) be a graph where Q = {qi|i = 1, . . .N} is a set of nodes, and ε is

the set of edges. Edges define the neighboring node pairs:

Definition 1 (Neighbors) Two nodes qi and qk are neighbors, if there is an

edge eik ∈ ε connecting them. The set of points which are neighbors of a node q

(i.e. the neighborhood of q) is denoted by Vq.
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Considering all the neighbors in the graph we can talk about a neighborhood

system.

Definition 2 (Neighborhood system) V = {Vq|q ∈ Q} is a neighborhood

system for G if

• q /∈ Vq,

• q ∈ Vr ⇔ r ∈ Vq.

The image segmentation problem is mapped to the graph as a labeling task over

the nodes.

Definition 3 (Labeling) To each node (q) of the graph, we assign a label (ω(q)),

from the finite label set Φ = {φ1, φ2, . . . , φJ}. Hence,

∀q ∈ Q : ω(q) ∈ Φ. (2.1)

The global labeling of the graph, ω, means the enumeration of the nodes with their

corresponding labels:

ω = { [q, ω(q)] | ∀q ∈ Q }. (2.2)

Ω denotes the (finite) set of all the possible global labelings (ω ∈ Ω)1.

In some cases, instead of a global labeling, we need to deal with the labeling

of a given subgraph:

Definition 4 (Subconfiguration) The subconfiguration of a given global label-

ing ω with respect a subset Y ⊆ Q is:

ωY = { [q, ω(q)] | ∀q ∈ Y }. (2.3)

Therefore, ωY ⊆ ω.

In the next step, we define Markov Random Fields (MRFs). As usual, Markov

property means here that the labeling of a given node depends directly only on

its neighbors.

1Since each node may have any of the J labels, the cardinality of Ω, #Ω is J#Q.
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Definition 5 (Markov Random Field) X is a Markov Random Field (MRF),

with respect to V, if

• for all ω ∈ Ω; P (X = ω) > 0

• for every q ∈ Q and ω ∈ Ω:

P (ω(q) | ωQ\{q}) = P (ω(q) | ωVq
). (2.4)

Discussion about MRFs is most convenient by defining the neighborhood system

V via the cliques of the graph.

Definition 6 (Clique) A subset C ⊆ Q is a clique if every pair of distinct nodes

in C are neighbors. C denotes a set of cliques.

Definition of V is equivalent to the enumeration of the cliques.

To characterize the goodness of the different global labelings, a so called Gibbs

measure is defined on Ω. Let V be a potential function which assigns a real

number VY (ω) to the subconfiguration ωY . V defines an energy U(ω) on Ω by

U(ω) =
∑

Y ∈2Q

VY (ω). (2.5)

where 2Q denotes the set of the subsets of Q.

Definition 7 (Gibbs distribution) A Gibbs distribution is a probability mea-

sure π on Ω with the following representation:

π(ω) =
1

Z
exp (−U(ω)) (2.6)

where Z is a normalizing constant or partition function:

Z =
∑

ω∈Ω

exp (−U(ω)). (2.7)

If VY (ω) = 0 whenever Y /∈ C, then V is called a nearest neighbor potential.

The following theorem is the principle of most MRF applications in computer

vision [32]:
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Theorem 1 (Hammersley-Clifford) X is a MRF with respect to the neigh-

borhood system V if and only if π(ω) = P (X = ω) is a Gibbs distribution with

nearest neighbor Gibbs potential V , that is

π(ω) =
1

Z
exp

(
−
∑

C∈C

VC(ω)

)
(2.8)

2.2 Observation and A Posteriori Distribution

We mean by observation arbitrary measurements from real world processes (such

as image sources) assigned to the nodes of the graph. In image processing, usually

the pixels’ color values or simple textural responses are used. However, later on

we will also introduce different features. In all the considered cases, these features

are locally obtained at the different pixels or over their neighborhoods. Formally,

we only prescribe here that the observation process assigns a real valued vector

to some (not necessarily to all) nodes of G.

Definition 8 Let be given a graph G = (Q, ε); a labeling process with domain Ω;

and a subset of nodes O ⊆ Q. The observation process is defined in the following

way:

O = { [q, o(q)] | ∀q ∈ O }, (2.9)

where

∀q ∈ O : o(q) ∈ R
D. (2.10)

Two assumptions will be used:

1. There are J random processes corresponding the forthcoming labels φ1, φ2,

. . ., φJ , which generate for each node q ∈ O the observation o(q) according

to locally specified distributions.

Consequently, regarding each q ∈ O and i = 1, . . . , J , we can define a

probability density function (pdf) pq,i (x) by

pq,i (x) = P (o(q) = x|ω(q) = φi), (2.11)

which determines the probability (pdf value) that the φi random process

generates the observed value o(q) at node q.
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2. The local observations are conditionally independent, given the global la-

beling:

P (O|ω) =
∏

q∈O

P (o(q)|ω(q)). (2.12)

2.3 Bayesian Labeling Model

Let X be a MRF on graph G = (Q, ε), with (a priori) clique potentials {VC(ω) | C ∈
C}. Consider an observation process O on G. The goal is to find the labeling ω̂,

which is the maximum a posteriori (MAP) estimate (see also Appendix A), i.e.

the labeling with the highest probability given O:

ω̂ = arg max
ω∈Ω

P (ω|O). (2.13)

Following Bayes’ rule and eq. 2.12,

P (ω|O) =
P (O|ω)P (ω)

P (O)
=

1

P (O)

[
∏

q∈O

P (o(q)|ω(q))

]
P (ω) (2.14)

Based on the Hammersley-Clifford theorem, P (ω) follows a Gibbs distribution:

P (ω) = π(ω) =
1

Z
exp

(
−
∑

C∈C

VC(ω)

)
(2.15)

while P (O) and Z (in the Gibbs distribution) are independent of the current value

of ω. Using also the monotonicity of the logarithm function and equations 2.13,

2.14, 2.15, the optimal global labeling can be written into the following form:

ω̂ = arg min
ω∈Ω

{
∑

q∈O

− logP (o(q)|ω(q)) +
∑

C∈C

VC(ω)

}
. (2.16)

Note that some approaches in the literature use the concept of ‘singleton clique’,

i.e. a clique, which consists of a single node [45]. Following this terminology,

the joint pdf P (O, ω) also derives from a MRF (see eq. 2.16). For the sake of

convenience, we also consider later on the− logP (o(q)|ω(q)) term as the singleton

potential of clique {q}.
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2.4 MRF Optimization

In applications using the MRF models, the quality of the segmentation depends

both on the appropriate probabilistic model of the classes, and on the optimiza-

tion technique which finds a good global labeling with respect to eq. (2.16). The

latter factor is a key issue, since finding the global optimum is NP hard [49].

On the other hand, stochastic optimizers using simulated annealing (SA) [32][50]

and graph cut techniques [49][51] have proved to be practically efficient offering

a ground to validate different energy models.

The results shown in the following chapters have been partially generated by a SA

algorithm which uses the Metropolis criteria [52] for accepting new states1, while

the cooling strategy changes the temperature after a fixed number of iterations.

The relaxation parameters are set by trial and error taking aim at the maximal

quality, and comparing the proposed model to reference MRF methods is done

using the same parameter setting.

After verifying our models by the above stochastic optimizer, we have also tested

some quicker techniques for practical purposes. We have found the determinis-

tic Modified Metropolis (MMD) [53] relaxation algorithm similarly efficient but

significantly faster for these tasks. We note that a coarse but quick MRF opti-

mization method is the ICM algorithm [54], which usually converges after a few

iterations, but the segmentation results are significantly worse. As for details, an

algorithmic overview and an extensive experimental comparison of the optimiza-

tion techniques can be found in [44]. For proof of convergence and some practical

recommendations concerning the temperature schedule, see [32].

2.5 Image Segmentation with a Single Observa-

tion Vector

A simple ‘single-layer’ application of the Bayesian labeling framework introduced

in Section 2.3 is the Potts model [42].

Let S be a 2-dimensional pixel lattice, while s denotes a single pixel of S. Assume

that the problem is defined above S and we have a single measurement (a R
D

1A state is a candidate for the optimal segmentation.
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Figure 2.1: a) Illustration of the first ordered neighborhood of a selected node on the
lattice, b) ‘singleton’ clique, c) doubleton cliques

vector) at each pixel s. The goal is to segment the input lattice with J pixel clus-

ters corresponding to J random processes (φ1, . . . , φJ), where the segmentation

fulfills the following requirements:

1. The clusters of the pixels are consistent with the local measurements.

2. The segmentation is smooth: pixels having the same cluster form connected

regions.

2.5.1 Mapping the Potts Model to the Bayesian Labeling
Problem

Several tasks can be mapped to a Bayesian labeling problem via the Potts model

e.g. [37][38][40]. Here dealing still with an abstract task definition, we shortly

introduce the modeling steps. Based on the previous notes, we must define G =

(Q, ε), Ω, O, π(ω) and pq,i (x) = P (o(q) = x|ω(q) = φi) for all q ∈ Q, and

i = 1, . . . , J .

1. Definition of G: We assign to each pixel of the input lattice a unique node

of the graph. First ordered neighborhood is used, i.e. each pixel has four

neighbors. Therefore, the cliques of the graph are singletons or doubletons

(see Fig. 2.1).

2. Definition of Ω: we use an application specific label-set Φ = {φ1, φ2, . . . , φJ},
which determines the set of the global labelings.

Chapter1/Chapter1Figs/sulyzo.eps
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3. Definition of the observation process: In this model, observation vector

is assigned to all nodes, hence O = Q. The exact o(q) features (∀q ∈ Q)

should be fixed depending on the current task.

4. Definition of the a priori distributions π(ω) = P (ω) is defined by

the doubleton clique potential functions. The a priori probability term

is responsible for getting smooth connected components in the segmented

images. Thus, we give penalty terms to each neighboring pair of nodes

whose labels are different. For any r, q ∈ Q node pairs, which fulfill q ∈ Vr,

{r, q} ∈ C is a clique of the graph, with potential:

V{r,q}(ω) =

{
−δ if ω(r) = ω(q)
+δ if ω(r) 6= ω(q)

(2.17)

Where δ ≥ 0 is a constant.

5. Definition of the a posteriori distributions Defining pq,i(x) for all

q ∈ Q and i = 1 . . . , J is a highly application specific task. Thereafter,

singleton clique potentials are calculated by

V{q} = − log pq,ω(q)

(
o(q)

)
. (2.18)

Note that in the above model, the a priori constraints are only responsible

for smoothing the segmented image: the position, size and shape of the

different clusters is mainly determined by the (a posteriori) probabilistic

class models.

With the previous definitions, the Bayesian labeling problem is completely de-

fined, and the optimal labeling can be determined by finding the optimum of eq.

(2.16).

2.5.2 Demonstrating Example of the Potts Model Based
Segmentation

For the sake of a quick demonstration, we introduce a simple segmentation prob-

lem in this section, and we give a solution using the above Potts-MRF based

approach.
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a b c

d e f

Figure 2.2: MRF segmentation example. Above: a) input image b) training regions
c) Gaussian densities for the training regions. Below: segmentation results d) without
neighborhood smoothing term (δ = 0), e) ICM relaxation f) MMD optimization

Consider a grayscale aerial image shown in Fig. 2.2a. The goal is to segment

this image using three classes: roads, plough-lands and forests. Assume that the

user is allowed to assign a rectangular training region for each class by hand (Fig.

2.2b).

Following the model of Section 2.5, the observation and the a posteriori dis-

tributions should be defined depending on the current task, meanwhile the re-

maining model elements are fixed. Since significantly different pixel intensities

correspond to the three regions in this case (e.g. the forests are dark), the obser-

vation will be the gray value of the pixels (o(s) is the gray level of s). For each

class, the a posteriori intensity distribution is modelled by a Gaussian density

ps,i(o(s)) = η(o(s), µi, σi), i ∈ {1, 2, 3}. The three Gaussian density functions are

shown in Fig. 2.2c. The distribution parameters are estimated over the training

regions of the classes (corresponding training regions in Fig. 2.2b and Gaussians

in Fig. 2.2c have the same color).

In the next step, we estimate the optimal labeling (eq. 2.16) with different relax-

Chapter1/Chapter1Figs/mrfdemo.eps
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ation techniques. The MRF-segmentation results are shown below in Fig. 2.21.

The first image (Fig. 2.2d) is the output of the pixel by pixel maximum likelihood

classification, or in other words, it is the output of a MRF, where the smoothing

term eq. 2.17 is ignored by setting δ = 0. This solution is notably noisy. In the

other cases, we used δ = 2, and applied the ICM (Fig. 2.2e), and the MMD (Fig.

2.2f) optimization strategies, respectively. One can observe, that using MMD

results in smoother and more noiseless segmented regions.

We will use the Potts model in the first part of this thesis (in Chapters 3 and 4).

However, the feature values and the probability distributions must be different

from the above simple approach. We will also need to consider that usually the

parameters cannot be set in a supervised manner, and in videos, they should

be estimated both using temporal and spatial feature statistics. On the other

hand, the single layer Potts structure will not be appropriate for tasks 2 and 3,

therefore, a model extension will be given in Chapter 5.

1For the comparison, implementation of Csaba Gradwohl and Zoltan Kato was used
[44].





Chapter 3

Bayesian Foreground Detection
in Uncertain Frame Rate
Surveillance Videos

In this section a new model will be proposed for foreground and shadow detection

in surveillance videos captured by static cameras. The model works without

detailed a priori object-shape information, and is also appropriate for low and

unstable frame rate video sources.

Contribution is presented in three key issues:

• A novel adaptive shadow model is introduced, and improvements are shown

versus previous approaches in scenes with difficult lighting and coloring

effects.

• We give a novel description for the foreground based on spatial statistics of

the neighboring pixel values, which enhances the detection of background

or shadow-colored object parts.

• We show how microstructure analysis can be used in the proposed frame-

work as additional feature components improving the results.

We validate our method on outdoor and indoor sequences including real surveil-

lance videos and well-known benchmark test sets.

19
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3. BAYESIAN FOREGROUND DETECTION IN UNCERTAIN FRAME

RATE SURVEILLANCE VIDEOS

3.1 Introduction

Background subtraction is a key issue in automated video surveillance. Fore-

ground areas usually contain the regions of interest, moreover, an accurate object-

silhouette mask can directly provide useful information for several applications,

for example people [55][56][57] or vehicle detection [34], tracking [58][59], biomet-

rical identification through gait recognition [60][61] or activity analysis [62].

Although background removal is a well examined problem (see e.g. [38][40][39]

[41][59][62][63][64][65]) it still raises challenging problems. Two of them is ad-

dressed in this chapter: shadow detection and foreground modeling. To enhance

the results, a novel microstructure model is used as well.

3.1.1 Shadow Detection: an Overview

The presence of moving cast shadows on the background makes it difficult to

estimate shape [66] or behavior [56] of moving objects, because they can be erro-

neously classified as part of the foreground mask. Since under some illumination

conditions 40−50% of the non-background points may belong to shadows, meth-

ods without shadow filtering [38][41][62] can be less efficient in scene analysis.

Hence, we deal here with an image segmentation problem with three classes:

foreground objects, background and shadows of the foreground objects being cast

on the background. Note that we should not detect self shadows (i.e. shad-

ows appearing on the foreground objects), which are part of the foreground, and

static shadows (cast shadows of the static objects), because they correspond to

the background.

In the literature, different approaches are available regarding shadow detection.

Apart from a few geometry based techniques suited to specific conditions [67],

[68], shadow detection is usually done by color filtering. Still image based methods

[69][70] attempt to find and remove shadows in the single frames independently.

However, these models have been evaluated only on high quality images where the

background has a uniform color or texture pattern, while in video surveillance,

we must expect images with poor quality and resolution. The authors in [70]

note that their algorithm is robust when the shadow edges are clear, but artifacts
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may appear in cases of images with complex shadows or diffuse shadows with

poorly defined edges. For practical use, the computational complexity of these

algorithms should be decreased [69].

Some other methods focus on the discrimination of the shadow edges, and edges

due to objects boundaries [71][72]. However, it may be difficult to extract con-

nected foreground regions from the resulting edge map, which is often ragged

[71]. Complex scenarios containing several small objects or shadow-parts may be

also disadvantageous for these methods.

For the above reasons, we focus on video (instead of still image) and region (in-

stead of edge) based shadow modeling techniques in the following. Here, an

important point of view regarding the categorization of the algorithms [28] is the

discrimination of the non parametric and parametric cases. Non parametric, or

‘shadow invariant’ methods convert the pixel values into an illuminant invariant

feature space: they remove shadows instead of detecting them. This task is of-

ten performed by a color space transformation. The normalized rgb [35][73] and

C1C2C3 spaces [74]1 are supposed to fulfill color constancy through using only

chrominance color components. [75] exploits hue constancy under illumination

changes to train a weak classifier as a key step of a more sophisticated shadow

detector. We find an overview of the illumination invariant approaches in [74]

indicating that several assumptions are needed regarding the reflecting surfaces

and the lightings. Also [72] emphasizes the limits of these methods: outdoors,

shadows will have a blue color cast (due to the sky), while lit regions have a

yellow cast (sunlight), hence the chrominance color values corresponding to the

same surface point may be significantly different in shadow and in sunlight. We

have also found in our experiments that the shadow invariant methods fail out-

doors several times, and they are rather usable indoors (Fig. 3.9). Moreover,

since they ignore the luminance components of the color, these models become

sensitive to noise.

Consequently, we develop a parametric model: first, we estimate the mean back-

ground values of the individual pixels trough a statistical background model [62],

then we extract feature vectors from the actual and the estimated background

1We refer later to the normalized rgb as rg space, since the third color component
is determined by the first and second.
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values of the pixels and model the feature domain of shadows in a probabilistic

way. Parametric shadow models may be local or global.

In a local shadow model [76] independent shadow processes are proposed for

each pixel. The local shadow parameters are trained using a second mixture

model similarly to the background in [62]. This way, the differences in the light

absorption-reflection properties of the scene points can be notably considered.

However, a single pixel should be shadowed several times till its estimated param-

eters converge, whilst the illumination conditions should stay unchanged. This

hypothesis is often not satisfied in outdoor surveillance environments, therefore,

this local process based approach is less effective in our case.

We follow the other approach: shadow is characterized with global parameters

in an image (or in each subregion, in case of videos having separated scene ar-

eas with different lightings), and the model describes how the background values

of the different pixels change, when shadow is projected on them. We consider

the transformation between the shadowed and background values of the pixels

as a random transformation, hence, we take several illumination artifacts into

consideration. On the other hand, we derive the shadow parameters from global

image statistics, therefore, the model performance is reasonable also on the pixel

positions where motion is rare.

3.1.2 Modeling the Foreground

Another important issue is related to foreground modeling. Some approaches

[62][65] consider background subtraction as a one class-classification problem,

where foreground image points are purely recognized as non-matching pixels to

the background model. Similarly, [30][39] build adaptive models for the back-

ground and shadow classes and detect foreground as outlier regions with respect

to both models. This way, background and shadow colored object parts cannot

be detected. To overcome this problem, foreground must be also modelled in a

more sophisticated way.

Before going into the details, we make a remark on an important property of the

examined video flows. For several video surveillance applications high-resolution
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images are crucial. Due to the high bandwidth requirement, the sequences are

often captured at low [77] or unsteady frame rate depending on the transmission

conditions. These problems appear, especially, if the system is connected to the

video sources through narrow band radio channels or oversaturated networks. For

another example, quick off-line evaluation of the surveillance videos is necessary

after a criminal incident. Since all the video streams corresponding to a given

zone should be continuously recorded, these videos may have a frame rate lower

than 1 fps to save up storage resources.

For these reasons, a large variety of temporal information, like pixel state tran-

sition probabilities [34][37][40], periodicity calculus [55][56], temporal foreground

description [38], or tracking [58][78], are often hard to derive, since they usually

need permanently high frame rate. Thus, we focus on using frame rate indepen-

dent features to ensure graceful degradation if the frame rate is low or unbalanced.

On the other hand, our model also exploits temporal information for background

and shadow modeling.

For the above reasons, our model uses spatial color information instead of tem-

poral statistics to describe the foreground. It assumes that foreground objects

consist of spatially connected parts and these parts can be characterized by typical

color distributions. Since these distributions can be multi-modal, the object-parts

should not be homogenous in color or texture, while we exploit the spatial infor-

mation without segmenting the foreground components.

Note that spatial object description has been already used both for interactive

[79] and unsupervised image segmentation [45]. However, in the latter case, only

large objects with typical color or texture are detected, since the model [45] pe-

nalizes the small segmentation classes. The authors in [38] have characterized the

foreground by assuming temporal persistence of the color and smooth changes in

the place of the objects. Nevertheless, in case of low frame rate, fast motion and

overlaying objects, appropriate temporal information is often not available.

3.1.3 Further Issues

Besides the color values, we exploit microstructure information to enhance the

accuracy of the segmentation. In some previous works [80][81] texture was used
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as the only feature for background subtraction. That choice can be justified in

case of strongly dynamic background (like a surging lake), but it gives lower

performance than pixel value comparison in a stable environment. We find a

solution for integrating intensity and texture differences for frame differencing in

[82]. However, that is a slightly different task from foreground detection, since

we should compare the image regions to background/shadow models. In aspect

of the background class, our color-texture fusion process is similar to the joint

segmentation approach of [40], which integrates gray level and local gradient fea-

tures. We extend it by using different and adaptively chosen microstructural

kernels, which suit the local scene properties better. Moreover, we show how this

probabilistic approach can be used to improve our shadow model.

Color space choice is a key issue in several corresponding methods, as it will be

intensively studied in Chapter 3. We have chosen the CIE L*u*v* space, for pur-

poses which will be detailed there. Here, we only mark two well known properties

of the CIE L*u*v* space: we can measure the perceptual distance between colors

with the Euclidean distance [83], and the color components are approximately

uncorrelated with respect to camera noise and changes in illumination [84]. Since

we derive the model parameters in a statistical way, there is no need for accurate

color calibration and we use the common CIE D65 standard. It is also not critical

to consider exactly the physical meaning of the color components which is usually

environment-dependent [74][85]; we use only an approximate interpretation of the

L, u, v components and show the validity of the model via experiments.

For validation we use real surveillance video shots and also test sequences from

a well-known benchmark set [28]. Table 3.1 summarizes the different goals and

tools regarding some of the above mentioned state-of-the-art methods and the

proposed model. For detailed comparison see also Section 3.7.

In summary, the main contributions of this chapter can be divided into three

groups. We introduce a statistical shadow model which is robust regarding the

forthcoming artifacts in real-world surveillance scenes (Section 3.3.2.), and a cor-

responding automatic parameter-update procedure, which is usually missing in

previous similar methods (Section 3.5.2). We introduce a non-object based, spa-

tial description of the foreground which enhances the segmentation result also

in low frame rate videos (Section 3.4). Meanwhile, we show how microstructure
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Table 3.1: Comparison of different corresponding methods and the proposed model.
Notes:† high frame-rate video stream is needed ‡foreground estimation from the current
frame * temporal foreground description, ** pixel state transitions

Method Needs
high fps†

Shadow
detection

Adaptive
shadow

Spatial
fg info‡

Scenes Texture

Mikic
2000 [30]

No global,
constant
ratio

No No outdoor No

Paragious
2001 [35]

No illumination
invariant

No No indoor No

Salvador
2004 [74]

No illumination
invariant

No No both No

Martel-
Brisson
2005 [76]

No local pro-
cess

Yes No indoor No

Sheikh
2005 [38]

Yes: tfd * No - No both No

Wang
2006 [40]

Yes: pst
**

global,
constant
ratio

No No indoor first
ordered
edges

Proposed
method

No global,
probabilis-
tic

Yes Yes both different
micro-
structures

analysis can improve the segmentation in this framework (Section 3.3.4).

We also use a few assumptions in the chapter. First, the camera stands in place

and has no significant ego-motion. Secondly, we expect static background objects

(e.g. there is no waving river in the background). The third assumption is related

to the illumination: we deal with one emissive light source in the scene, however,

we consider the presence of additional diffused and reflected light components.

3.2 Formal Model Description

The segmentation model follows the Bayesian labeling approach introduced in

Section 2.3, more specifically the single layer model of Section 2.5. Denote by S
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the two dimensional pixel grid and we use henceforward a first ordered neighbor-

hood system on the lattice. As defined earlier, a unique node of the MRF-graph

G is assigned to each pixel. Thus for simplicity, s will denote also a pixel of the

image and the corresponding node of G in this chapter.

The procedure assigns a label ω(s) to each pixel s ∈ S form the label-set:

Φ = {fg,bg,sh} corresponding to three possible classes: foreground (fg), back-

ground (bg) and shadow (sh). As is typical, the segmentation is equivalent to a

global labeling ω = {[s, ω(s)] | s ∈ S}, and the probability of a given ω ∈ Ω in

the label field follows Gibbs distribution.

The image data (observation) at pixel s is characterized by a 4 dimensional feature

vector:

o(s) = [oL(s), ou(s), ov(s), oχ(s)]
T (3.1)

where the first three elements are the color components of the pixel in CIE L*u*v*

space, and oχ(s) is a texture term (more specifically a microstructural response)

which we introduce in Section 3.3.4 in details. Set O = {o(s)| s ∈ S} marks the

global image data.

The key point in the model is to define the conditional density functions pφ(s) =

P (o(s)| ω(s) = φ), for all φ ∈ Φ and s ∈ S. For example, pbg(s) is the probability

that the background process generates the observed feature value o(s) at pixel s.

Later on o(s) in the background will be also featured as a random variable with

probability density function pbg(s).

We define the conditional density functions in Section 3.3-3.5, and the segmenta-

tion procedure will be presented in Section 3.7 in details. Before continuing, note

that we minimize the minus-logarithm of the global probability term (similarly

to eq. 2.16) in fact. Therefore, in the following we use the εφ(s) = − log pφ(s)

local energy terms, for easier notation.
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3.3 Probabilistic Model of the Background and

Shadow Processes

3.3.1 General Model

We model the distribution of feature values in the background and in the shadow

by Gaussian density functions, like e.g. [28][37][40].

Considering the low correlation between the color components [84], we approxi-

mate the joint distribution of the features by a 4 dimensional Gaussian density

function with diagonal covariance matrix:

Σφ(s) = diag{σ2
φ,L(s), σ

2
φ,u(s), σ

2
φ,v(s), σ

2
φ,χ(s)} (3.2)

for φ ∈ {bg, sh}.
Accordingly, the distribution parameters are µφ(s) = [µφ,L(s), . . . , µφ,χ(s)]

T mean,

and σφ(s) = [σφ,L(s), . . . , σφ,χ(s)]
T standard deviation vectors. With this ‘diag-

onal’ model we avoid matrix inversion and determinant recovering during the

calculation of the probabilities, and the εφ(s) = − log pφ(s) terms can be derived

directly from the one dimensional marginal probabilities:

εφ(s) = 2 log 2π +
∑

i={L,u,v,χ}

[
log σφ,i(s) +

1

2

(
oi(s)− µφ,i(s)

σφ,i(s)

)2
]

(3.3)

According to eq. (3.3), each feature contributes with its own additional term to

the energy calculus. Therefore, the model is modular: the one dimensional model

parameters, [µφ,i(s), σ
2
φ,i(s)], can be estimated separately.

3.3.2 Color Features in the Background Model

The use of a Gaussian distribution to model the observed color of a single back-

ground pixel is well established in the literature, with the corresponding param-

eter estimation procedures such as in [62][86]. In our model, following one of the

most popular approaches [62] we train the color components of the background

parameters [µbg(s), σbg(s)] in a similar manner to the conventional online k-means

algorithm. Although this algorithm is not our contribution, it is important to be
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Figure 3.1: Illustration of two illumination artifacts (the frame has been chosen from
the ‘Entrance pm’ test sequence). 1: light band caused by non-Lambertian reflecting
surface (glass door) 2: dark shadow part between the legs (more object parts change
the reflected light). The constant ratio model (in the middle) causes errors, while the
proposed model (right image) is more robust.

understood in terms of the following parts of this section, thus we briefly intro-

duce it.

We consider each pixel s as a separate process, which generates an observed pixel

value sequence over time:

{o[1](s), o[2](s), . . . , o[t](s)}. (3.4)

To model the recent history of the pixels, [62] suggested a mixture of K Gaussians

distribution:

P (o[t](s)) =

K∑

k=1

κ
[t]
k (s) · η

(
o[t](s), µ

[t]
k (s), σ

[t]
k (s)

)
, (3.5)

where η(.) is a Gaussian density function, with diagonal covariance matrix. We

ignore here multi-modal background processes [62], and consider the background

Gaussian term to be equivalent to the Gaussian component in the mixture, which

has the highest weight. Thus, at time t:

µbg(s) = µ
[t]
kmax

(s), σbg(s) = σ
[t]
kmax

(s) (3.6)

where

kmax = arg max
k

κ
[t]
k (s). (3.7)

The parameters of the above distribution are estimated and updated without user

interaction. First, we introduce a D matching operator between a pixel value and

Chapter2/Chapter2Figs/shadArtifacts.eps
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a local Gaussian component as follows:

Ds(o(s), k)

{
1 if

[
o(s)− µ[t]

k (s)
]
T
(
Σ

[t]
k

)−1 [
o(s)− µ[t]

k (s)
]
< γ

0 otherwise
(3.8)

where γ is a robust threshold parameter, [62] recommends γ = 2.5.

The weight parameters of the components are updated as

κ
[t+1]
k (s) = (1− ξ1) · κ[t]

k (s) + ξ1 ·Ds(o
[t](s), k) (3.9)

which follows a normalization to ensure
∑K

k=1 κ
[t+1]
k = 1.

Usually, the mean and deviation parameters of the unmatched components do

not change. However, if no match is found among all terms, the component with

the lowest weight (indexed by kmin) is replaced with a Gaussian with the current

pixel value as its mean value, an initially high variance, and low prior weight:

µ
[t+1]
kmin

(s) = o(s), σ
[t+1]
kmin

(s) = σ0, κ
[t+1]
kmin

(s) = κ0 (3.10)

if Ds(o(s), k) = 0 for k = 1 . . .K.

Otherwise, if km is the matched component [Ds(o(s), km) = 1], the following

update process should be used:

µ
[t+1]
km

(s) = (1− ξ2) · µ[t]
km

(s) + ξ2 · o[t](s) (3.11)

σ̊
[t+1]

km
(s) = (1− ξ2) · σ̊

[t]

km
(s) + ξ2 ·

[
o[t](s)− µ[t]

km
(s)
]◦

(3.12)

where ◦ applied for a vector is the per element squaring operator.

In summary, [µbg,L(s), µbg,u(s), µbg,v(s)]
T vector estimates the mean background

color of pixel s measured over the recent frames, while σbg(s) is an adaptive noise

parameter.

3.3.3 Color Features in the Shadow Model

As we have stated in the introduction, we characterize shadows by describing the

background-shadow color value transformation in the images. The shadow calcu-

lus is based on the illumination-reflection model [87], which has been originally
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introduced for constant lighting, flat and Lambertian reflecting surfaces. Usually,

our scene does not fulfill these requirements. The presented novelty is that we

use a probabilistic approach to describe the deviation of the scene from the ideal

surface assumptions, and get a more robust shadow detection.

3.3.3.1 Measurement of Color in the Lambertian Model

According to the illumination model [87] the response g(s) of a given image sensor

placed at pixel s can be written as

g(s) =

∫
e(λ, s)ρ(λ, s)ν(λ)dλ (3.13)

where e(λ, s) is the illumination function at a given wavelength λ, ρ(s) depends on

the surface albedo and geometric, ν(λ) is the sensor sensitivity. Accordingly, the

difference between the shadowed and illuminated background values of a given

surface point is caused only by the different local value of e(λ, s). For example,

outdoors, the illumination function observed in sunlit is the composition of the

direct component (sun), the Rayleigh scattering (sky), causing that the ambient

light has a blue tingle [88], and residual light components reflected from other

non-emissive objects. On the other hand, the effect of the direct component is

missing in the shadow.

Although the validity of eq. (3.13) is already limited by several scene assumptions

[87], in general, it is still too difficult to exploit appropriate information about

the corresponding background-shadow values, since the components of the illumi-

nation function are unknown. Therefore, further strong simplifications are used

in the applications. According to [70] the camera sensors must be exact Dirac

delta functions: ν(λ) = q0 ·δ(λ−λ0) and the illumination must be Planckian [89].

In this case, eq.(3.13) implies the well-known ’constant ratio’ rule. Namely, the

ratio of the shadowed gsh(s) and illuminated value gbg(s) of a given surface point

is considered to be constant over the image: gsh(s)
gbg(s)

= A.

The ‘constant ratio’ rule has been used in several applications [30][37][40]. Here

the shadow and background Gaussian terms corresponding to the same pixel are

related via a globally constant linear density transform. In this way, the results
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Figure 3.2: Histograms of the ψL, ψu and ψv values for shadowed and foreground points
collected over a 100-frame period of the video sequence ‘Entrance pm’ (frame rate: 1
fps). Each row corresponds to a color component.

may be reasonable when all the direct, diffused and reflected light can be con-

sidered constant over the scene. However, the reflected light may vary over the

image in case of several static or moving objects, and the reflecting properties of

the surfaces may differ significantly from the Lambertian model (See Fig. 3.1).

The efficiency of the constant ratio model is also restricted by several practical

reasons, like quantification errors of the sensor values, saturation of the sensors,

imprecise estimation of gbg(s) and A, or video compression artifacts. Based on

our experiments (Section 3.7), these inaccuracies cause poor detection rates in

some outdoor scenes.

3.3.3.2 Proposed Model

The previous section suggests that the ratio of the shadowed and background

luminance values of the pixels may be useful, but not powerful enough as a

descriptor of the shadow process. Instead of constructing a more difficult illumi-

nation model, for example in 3D with two cameras, we overcome the problems

with a statistical model. For each pixel s, we introduce the variable ψL(s) by:

ψL(s) =
oL(s)

µbg,L(s)
(3.14)

Chapter2/Chapter2Figs/sepmShFgHistosB.eps
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where, as defined earlier, oL(s) is the observed luminance value at s, and µbg,L(s)

is the mean value of the local Gaussian background term estimated over the

previous frames [62].

Thus, if the ψL(s) value is close to the estimated shadow darkening factor, s is

more likely to be a shadowed point. More precisely, in a given video sequence,

we can estimate the distribution of the shadowed ψL values globally in the video

parts. Based on experiments with manually generated shadow masks, a Gaussian

approximation seems to be reasonable regarding the distribution of shadowed

ψL values (Fig. 3.2 shows the global ψ statistics regarding a 100-frame period

of outdoor test sequence ‘Entrance pm’). For comparison, we have also plotted

the statistics for the foreground points, which follows significantly different, more

uniform distribution.

Due to the spectral differences between the direct and ambient illumination, cast

shadows may also change the u and v color components [72]. We have found an

offset between the shadowed and background u values of the pixels, which can be

efficiently modelled by a global Gaussian term in a given scene (similarly as for

the v component). Hence, we define ψu(s) (and ψv(s)) by

ψu(s) = ou(s)− µbg,u(s) (3.15)

As Fig. 3.2 shows, the shadowed ψu(s) and ψv(s) values follow approximately

normal distributions.

Consequently, the shadow color process is characterized by a three dimensional

Gaussian random variable:

∀s ∈ S : ψ(s) = [ψL(s), ψu(s), ψv(s)]
T ∼ N [µψ, σψ] (3.16)

Using the linear transform theorem (see Theorem 5 of page 135), eq. 3.14 and

3.15, the color values in the shadow at a given pixel position are also generated

by Gaussian distribution,

[oL(s), ou(s), ov(s)]
T ∼ N [µsh(s), σsh(s)] (3.17)

with the following parameters:

µsh,L(s) = µψ,L · µbg,L(s) (3.18)
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σ2
sh,L(s) = σ2

ψ,L · µ2
bg,L(s) (3.19)

Regarding the u (and similarly to the v) component:

µsh,u(s) = µψ,u + µbg,u(s), σ2
sh,u(s) = σ2

ψ,u (3.20)

The estimation and the time dependence of parameters [µψ, σψ] are discussed in

Section 3.5.2.

3.3.4 Microstructural Features

In this section, we define the 4th dimension of the pixels’ feature vectors (eq.

(3.1)), which contains local microstructural responses.

3.3.4.1 Definition of the Used Microstructural Features

Pixels covered by a foreground object often have different local textural features

from the background at the same location, moreover, texture features may identify

foreground points with background or shadow like color. In our model, texture

features are used together with color components and they enhance the segmen-

tation results as an additional component in the feature vector. Therefore, we

make restrictions regarding the texture features: we search for components that

we can get by low additional computing time from the existing model elements,

in exchange for some accuracy.

According to our model, the textural feature is retrieved from a color feature-

channel by using microstructural kernels. For practical reasons, and following

the fact that the human visual system mainly percepts textures as changes in

intensity, we use texture features only for the ‘L’ color component. A novelty of

the proposed model is (as being explained in Section 3.3.4.3) that we may use

different kernels at different pixel locations. More specifically, there is a set of

kernel coefficients for each pixel s: {as(r)|r ∈ Ks}, where Ks is the set of pixels

around s covered by the kernel. Feature oχ(s) is defined by:

oχ(s) =
∑

r∈Ks

as(r) · oL(r) (3.21)
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3.3.4.2 Analytical Estimation of the Distribution Parameters

Here, we show that with some further reasonable assumptions the features defined

by eq. (3.21) have also Gaussian distribution, and the distribution parameters

[µφ,χ(s), σφ,χ(s)], φ ∈ {bg, sh} can be determined analytically.

As a simplification we use the fact that the neighboring pixels have usually the

same labels, and calculate the probabilities by:

pφ(s) = P (o(s)|ω(s) = φ) ≈ P (o(s)|ω(r) = φ, r ∈ Ks) (3.22)

This assumption is inaccurate near the border of the objects, but it is a reasonable

approximation if the kernel size (and the size of set Ks) is small enough. To ensure

this condition, we use 3× 3 kernels in the following.

Accordingly, with respect to eq. (3.21), oχ(s) in the background (and similarly

in the shadow) can be considered as a linear combination of Gaussian random

variables from the following set Λs:

Λs = {oL(r)| r ∈ Ks} (3.23)

where oL(r) ∼ N [µbg,L(r), σbg,L(r)]. We assume that the oL(r) variables have

joint normal distribution, therefore, oχ(s) is also Gaussian with the mean and

standard deviation parameters [µbg,χ(s), σbg,χ(s)]. The mean value µbg,χ(s) can

be determined directly by

µbg,χ(s) =
∑

r∈Ks

as(r) · µbg,L(r) (3.24)

as a consequence of widely used results of probability calculus (see Theorems 4

and 5 given in Appendix A page 135).

On the other hand, to estimate the σbg,χ(s) parameter, we should model the cor-

relation between the elements of Λs.

In effect, the oL(r) variables in Λs are non-independent, since fine alterations in

global illumination or camera white balance cause correlated changes of the neigh-

boring pixel values. However, very high correlation is not usual, since strongly

textured details or simply the camera noise result in some independence of the

adjacent pixel levels. While previous methods have ignored this phenomenon e.g.
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with considering the features to be uncorrelated [40], our goal is to give a more

appropriate statistical model by estimating the order of correlation for a given

scene.

We model the correlation factor between the ‘adjacent’ pixel values by a con-

stant over the whole image. Let be q and r two pixels in the neighborhood of

s (q, r ∈ Ks), and denote by cq,r the correlation coefficient between q and r.

Accordingly,

cq,r =

{
1 if q = r
c if q 6= r

(3.25)

where c is a global constant. To estimate c, we randomly choose some pairs of

neighboring pixels. For each selected pixel pair (q, r), we make a set Iq,r from

time stamps corresponding to common background occurrences of pixels q and

r. Thereafter, we calculate the normalized cross correlation ĉq,r between time

series {o[t]
L (q)|t ∈ Iq,r} and {o[t]

L (r)|t ∈ Iq,r}, where t indices are time stamps of

the oL measurements. Finally, we approximate c by the average of the collected

correlation coefficients ĉq,r over all selected pixel pairs.

Thereafter, we can calculate σ2
bg,χ(s) according to Theorems 4 and 5:

σ2
bg,χ(s) =

∑

q,r∈Ks

as(q) · as(r) · σbg,L(q) · σbg,L(r) · cq,r (3.26)

Similarly, the Gaussian shadow parameters regarding the microstructural com-

ponents by using eq. (3.18), (3.19), (3.24):

µsh,χ(s) =
∑

r∈Ks

as(r) · µψ,L · µbg,L(r) = µψ,L · µbg,χ(s) (3.27)

σ2
sh,χ(s) = σ2

ψ,L

∑

q,r∈Ks

bq,r(s) (3.28)

where

bq,r(s) = as(q) · as(r) · µbg,L(q) · µbg,L(r) · cq,r (3.29)

3.3.4.3 Strategies for Choosing Kernels

In the following we deal with zero-mean kernels (∀s :
∑

r∈Ks
as(r) = 0) as a

generalization of simple first-order edge features by [40]. Here we face an impor-

tant problem from an experimental point of view. Each kernel has an adequate
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pattern, for which it generates a significant nonzero response, while most of the

pixel-neighborhoods in an image are ‘untextured’ with respect to it. Therefore,

one single kernel is unable to discriminate an ‘untextured’ object point on an ‘un-

textured’ background. An evident enhancement uses several kernels which can

recognize several patterns. However, increasing the number of the microstructural

channels would intensify the noise, because at a given pixel position all the ‘in-

adequate’ kernels give irrelevant responses, which are accumulated in the energy

term eq. (3.3). To overcome this problem we use one microstructural channel

only (see eq. (3.1)), and we use the most appropriate kernel at each pixel. Our

hypothesis is: if the kernel response at s is significant in the background, the ker-

nel gives more information for the segmentation there. Therefore, after we have

defined a kernel set for the scene, at each pixel position s the kernel having the

highest absolute response in the background centered at s is used. According to

our experiments, different kernel-sets, e.g. corresponding to the Laws-filters [31],

or the Chebyshev polynomials [31][90], produce similar results. In the following

sections we use the kernels shown in Fig. 3.3, which we have found reasonable

for the scenes. Regarding the ‘Entrance pm’ sequence, each kernel of the set

corresponds to a significant number of background points according to our choice

strategy (distributed as 44-19-22-15%), showing that each kernel is valuable.

Figure 3.3: Kernel-set used in the experiments: 4 of the impulse response arrays
corresponding to the 3× 3 Chebyshev basis set proposed by [90]

3.4 Foreground Probabilities

The description of background and shadow characterizes the scene and illumina-

tion properties, consequently it has been possible to collect statistical information

about them in time. In our case, the color distribution regarding the foreground

Chapter2/Chapter2Figs/kernelek.eps
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Foreground probability calculation

a) video image, with marking s and its neighborhood Us (window side z = 45
is used.)

b) noisy preliminary foreground mask

c) Set Hs: preliminary detected foreground pixels in Us. (Pixels of Us\Hs

are marked with white.)

d) Histogram of Hs, marking os, and its τ neighborhood.

e) Result of fitting a weighted Gaussian term for the [o(s)− τ, o(s) + τ ] part
of the histogram. Here, ζ = 2.71 is used (it would be the foreground
probability density value for each pixel according to the ‘uniform’ model),
but the procedure increases the foreground probability to 4.03.

f) Segmentation result of the model optimization with the uniform fore-
ground calculus

g) Segmentation result by the proposed model

Figure 3.4: Determination of the foreground conditional probability term for a given
pixel s (for simpler representation in grayscale).

Chapter2/Chapter2Figs/fgShow9.eps
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areas is unpredictable in the same way. If the frame rate is very low and unbal-

anced, we must consider consecutive images containing different scenarios with

different objects. Previous works [30][39] used uniform distribution to describe

the foreground process which agrees with the long-term color statistics of the

foreground pixels (Fig. 3.2), but it presents a weak description of the class. Since

the observed feature values generated by the foreground, shadow and background

processes overlap strongly in numerous real world scenes, many foreground pixels

are misclassified that way.

Instead of temporal statistics we use spatial color information to overcome this

problem by using the following assumption: whenever s is a foreground pixel,

we should find foreground pixels with similar color in the neighborhood. Conse-

quently, if we can estimate the color statistics of the nearby foreground pixels,

we can decide if a pixel with a given color is likely part of the foreground or not.

Unfortunately, when we want to assign a probability value to a given pixel de-

scribing its foreground membership, the positions of the nearby foreground pixels

are also unknown. However, to estimate the local color distribution, we do not

need to find all foreground pixels, just some samples in each neighborhood. The

key point is that we identify some pixels which certainly correspond to the fore-

ground: these are the pixels having significantly different levels from the locally

estimated background and shadow values, thus they can be found by a simple

thresholding:

ω0
s =

{
fg if (εbg(s) > ζ) AND (εsh(s) > ζ)
bg otherwise

(3.30)

where ζ is a threshold (which in analogous with the uniform value in previous

models [39] choosing εfg(s) = ζ), and ω0
s is a ‘preliminary’ segmentation label of

s.

Next, we estimate for each pixel s the local color distribution of the foreground,

using the certainly foreground pixels in the neighborhood of s. The procedure

is demonstrated in Fig. 3.4 (for easier visualization with 1D grayscale feature

vectors). We use the following notations: H denotes the set of pixels marked as

certainly foreground elements in the preliminary mask:

H = {r | r ∈ S, w0
r = fg} (3.31)
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Note that H may be a coarse estimation of the foreground (Fig. 3.4b).

Let be Us the set of the neighboring pixels around s, considering rectangular

neighborhood with window size z × z (Fig. 3.4a). Thereafter, Hs is defined with

respect to s as the set of neighboring pixels determined as ‘foreground’ by the

preprocessing step: Hs = H ∩ Us (Fig. 3.4c).

The foreground color distribution around s can be characterized by a normalized

histogram hs over Hs (Fig. 3.4d). However, instead of using the noisy hs directly,

we approximate it by a ‘smoothed’ probability density function, fs(o), and deter-

mine the foreground probability term as pfg(s) = fs
(
o(s)

)
.1

To deal with multi-colored or textured foreground components, the estimated

fs(.) function should be multi-modal (see a bimodal case in Fig. 3.4d). Note that

we use fs(.) only to calculate the foreground probability value of s as fs
(
o(s)

)
.

Thus, it is enough to estimate the parameters of the mode of fs(.), which covers

o(s) (see Fig. 3.4e). Therefore, we consider fs(.) as a mixture of a weighted

Gaussian term η(.) and a residual term ϑs(.), for which we only prescribe that

ϑs(.) is a probability density function and ϑs(o) = 0 if ‖o(s)− o‖ < τ . (κ(s) is a

weighting factor: 0 < κ(s) < 1.) Hence,

fs(o) = κ(s) · η(o|µs,Σs) +
(
1− κ(s)

)
· ϑs(o) (3.32)

Accordingly, the foreground probability value of pixel s is statistically character-

ized by the distribution of its neighborhood in the color domain:

εfg(s) = − log fs
(
o(s)

)
= − log κ(s)− log η

(
o(s)|µs,Σs

)
(3.33)

The steps of the foreground energy calculation are detailed in Fig. 3.5. We can

speed up the algorithm, if we calculate the Gaussian parameters by considering

only some randomly selected pixels in Hs [4]. We describe the parameter settings

in Section 3.5.1.

1In the spatial foreground model, we must ignore the textural component of o, since
different kernels are used in different pixel locations, and the microstructural responses
of the various pixels may be incomparable. Thus in this section, o is considered to be
a three dimensional color vector, and hs a three dimensional histogram.
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Algorithm 1: foreground probability calculation

1. The pixels of Hs whose pixel values are close enough to o(s) are collected
into a set:

HD
s = {r | r ∈ Hs, ‖o(s)− o(r)‖ < τ} (3.34)

2. The empirical mean and deviation values are calculated regarding the
color levels of set HD

s : µDs , σDs . These values estimate the mean and
deviation parameters of the Gaussian component η(.).

3. Denote by #H the number of the elements in set H. κ(1)(s) = #HD
s

#Hs
is

introduced as the ratio of the number of pixels with similar color to s
and all pixels, among the neighboring foreground initialized pixels.

4. An extra term is used to keep the probability low if there are not
any or only a few foreground pixels in the neighborhood. Denote by
κ(2)(s) = #Hs

z2
the ratio of the number of pixels in Hs and the size of

the neighborhood Us. This term biases the weight through a sigmoid
function:

κ(s) = κ(1)(s) · 1

1 + exp
[
−
(
κ(2)(s)− κmin/2

)] (3.35)

5. Finally, the energy term is calculated as:

εfg(s) = − log κ(s)− log η(o(s), µDs , σ
D
s ) (3.36)

Figure 3.5: Algorithm for determination of the foreground probability term. Notations
are defined in Section 3.4.
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3.5 Parameter Settings

Our method works with scene-dependent and condition-dependent parameters.

Scene-dependent parameters can be considered constant in a specific field, and

are influenced by, e.g. camera settings, a priori knowledge about the appearing

objects or reflection properties. We provide strategies on how to set these pa-

rameters if a surveillance environment is given. Condition-dependent parameters

vary in time in a scene, therefore, we use adaptive algorithms to follow them.

We emphasize two properties of the presented model. Regarding the background

and shadow processes, only the one dimensional marginal distribution parame-

ters should be estimated (Section 3.3.1). On the other hand, we should estimate

here the color-distribution parameters only, since the mean-deviation values cor-

responding to the microstructural component are determined analytically (see

Section 3.3.4.2).

3.5.1 Background and Foreground Model Parameters

The background parameter estimation and update procedure is automated, based

on the work in [62], which presents reasonable results, and it is computationally

more effective than the standard EM algorithm.

The foreground model parameters (Section 3.4) correspond to a priori knowl-

edge about the scene, e.g. the expected size of the appearing objects and the

contrast. These features exploit basically low-level information and are quite

general, therefore the method is able to consider a large variety of moving objects

in a scene. In our experiments, we set these parameters empirically using the

following strategies:

• z: the size of the neighborhood window Us in pixels considered in the

process. It depends on the expected size of the objects in the scene, used

z = 1/3
√
TB, where TB is the approximate average territory of the objects’

bounding boxes.

• κmin: control parameter for the minimum required number of pre-classified

foreground pixels in the neighborhood. If the ratio of the pixels and the

size of the neighborhood is smaller than κmin, the foreground probability
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Figure 3.6: Different parts of the day on ‘Entrance’ sequence, segmentation results.
Above left: in the morning (‘am’), right: at noon, below left: in the afternoon (‘pm’),
right: wet weather

will be low there, due to the sigmoid function of eq. (3.35). Small κmin

increases the number of detected foreground pixels and can be used if the

objects are of compact shape like in the sequence ‘Highway’. Otherwise

small κmin causes high false foreground detection rate. Applying κmin = 0.1

for vehicle monitoring and κmin = 0.25 for pedestrians (including cyclists,

baby carriages etc.) proved to be good.

• τ : the threshold parameter which defines the maximum distance in the

feature space between pixels generated by one Gaussian process. We use

outdoors in high contrast, τ = 0.2 · dmax, indoors τ = 0.1 · dmax, where

dmax is the maximum occurring distance in the feature space.

Notes on parameter ζ are given in Section 3.7 and in Fig. 3.11.

3.5.2 Shadow Parameters

The changes in the global illumination significantly alter the shadow properties

(Fig. 3.6). Moreover, changes can be performed rapidly: indoors due to switch

on/off different light sources, while outdoors due to the appearance of clouds.

Regarding the shadow parameter settings, we discriminate parameter initializa-

tion and re-estimation. From a practical point of view, initialization may be

supervised with marking shadowed regions in a few video frames by hand, once

after switching on the system. Based on the training data, we can calculate

Chapter2/Chapter2Figs/diffweather.eps
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Figure 3.7: Shadow ψ statistics on four sequences recorded by the ‘Entrance’ camera of
our University campus. Histograms of the occurring ψL, ψu and ψv values of shadowed
points. Rows correspond to video shots from different parts of the day. We can observe
that the peak of the ψL histogram strongly depends on the illumination conditions,
while the change in the other two shadow parameters is much smaller.

maximum likelihood estimates of the shadow parameters. On the other hand,

there is usually no opportunity for continuous user interaction in an automated

surveillance environment, thus the system must adopt the illumination changes

raising a claim to an automatic re-estimation procedure.

For the above reasons, we use supervised initialization, and focus on the parame-

ter adaption process in the following. The presented method is built in a 24-hour

surveillance system of our university campus. We validate our algorithm via four

manually evaluated ground truth sequences captured by the same camera under

different illumination conditions (Fig. 3.6).

According to section 3.3.2, the shadow parameters are 6 scalars: 3-3 components

of µψ respectively σψ vectors. Fig. 3.7 shows the one-dimensional histograms for

the occurring ψL, ψu and ψv values of shadowed points for each video shot. We

can observe that while the variation of parameters σψ, µψ,u and µψ,v are low, µψ,L

varies in time significantly. Therefore, we update the parameters in two different

ways.

Chapter2/Chapter2Figs/se4timeshadowB.eps
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Figure 3.8: ψ statistics for all non-background pixels Histograms of the occurring ψL,
ψu and ψv values of all the non-background pixels in the same sequences as in Figure
3.7.

3.5.2.1 Re-estimation of the Chrominance Parameters

The update procedure of parameters [µψ,u, σψ,u] and [µψ,v, σψ,v] is similar to that

was used in [39]. We show it regarding the u component only, since the v com-

ponent is updated in the same way.

We re-estimate the parameters at fixed time-intervals T. Denote µψ,u[t], σψ,u[t] the

parameters at time t. Wt2 is the set containing the observed ψu values collected

over the pixels detected as shadow between time t1 = t2 − T and t2:

Wt2 = {ψ[t]
u (s)|t = t1, . . . , t2 − 1, ω[t](s) = sh, s ∈ S} (3.37)

where upper index [t] refers to time, #Wt2 is the number of the elements, Mt2

and Dt2 are the empirical mean and the standard deviation values of Wt2 . We

update the parameters:

µψ,u[t2] = (1− ξ[t2]) · µψ,u[t1] + ξ[t2] ·Mt2 (3.38)

σ2
ψ,u[t2] = (1− ξ[t2]) · σ2

ψ,u[t1] + ξ[t2] ·D2
t2

(3.39)

Parameter ξ[t] is a weighting term (0 ≤ ξ[t] ≤ 1) depending on #Wt, namely

greater number of detected shadow points increase ξ[t] and the influence of the

Mt respectively D2
t term. We use T = 60 sec.

Chapter2/Chapter2Figs/se4timeshadowforegroundB.eps
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3.5.2.2 Re-estimation of the Luminance Parameters

Parameter µψ,L corresponds to the average background luminance darkening fac-

tor of the shadow. Except from window-less rooms with constant lightning, µψ,L

is strongly condition dependent. Outdoors, it can vary between 0.6 in direct

sunlight and 0.95 in overcast weather. The simple re-estimation from the previ-

ous section does not work in this case, since the illumination properties between

time t and t+ T may rapidly change a lot, which would result in absolutely false

detected shadow values in set Wt presenting false Mt and Dt parameters for the

re-estimation procedure.

For this reason, we gain the actual µψ,L from the statistics of all non-background

ψL-s (where the background filtering should be done by a good approximation

only, we use the Stauffer-Grimson algorithm). In Fig. 3.8 we can observe that

the peaks of the ‘non-background’ ψL-histograms are approximately in the same

location as they were in Fig. 3.7. The video shots corresponding to the first and

second rows were recorded around noon where the shadows were relatively small,

however, the peak is still in the right place in the histogram.

These experiments encourage us to identify µψ,L with the location of the peak on

the ‘non-background’ ψL-histograms for the scene.

The description of the update-algorithm of µψ,L is as follows. We define a data

structure which contains a ψL value with its timestamp: [ψL, t]. We store the

‘latest’ occurring [ψL, t] pairs of the non-background points in a set Q, and up-

date the histogram hL of the ψL values in Q continuously. The key point is the

management of set Q. We define MAX and MIN parameters which controls the

size of Q. The queue management algorithm has the following steps:

1. For each frame t we determine:

Ψt = { [ψ
[t]
L (s), t] | s ∈ S, ω[t](s) 6= bg} (3.40)

2. We append Ψt to Q.

3. We may remove elements from Q:

• if #Q < MIN, we keep all the elements.
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• if #Q ≥ MIN we find the eldest timestamp te in Q and remove all the

elements from Q with time stamp te.

4. If #Q > MAX after step 3: in order of their timestamp we remove further

(‘old’) elements from #Q till we reach #Q ≤ MAX.

5. We update the histogram hL regarding Q and apply:

µ
[t+1]
ψ,L = argmax{hL} (3.41)

Hence, the algorithm, follows four intentions:

• Q contains always the latest available ψL values.

• The algorithm keeps the size of Q between prescribed bounds MAX and

MIN ensuring the topicality and relevancy of the data contained.

• The actual size of Q is around MAX in case of cluttered scenarios.

• In the case of few or no motion in the scene, the size of Q decreases until

MIN. This fact increases the influence of the forthcoming elements, and

causes quicker adaptation, since it is faster to modify the shape of a smaller

histogram.

Parameter σψ,L is updated similarly to σψ,u but only in the time periods when

µψ,L does not change significantly.

Note that the above update process may fail in shadow free scenarios. However,

that case occurs mostly under artificial illumination conditions, where the shadow

detector module can be switched off using a priori knowledge.

3.6 MRF Optimization

The MAP estimator (eq. 2.16) is realized by combining a conditional independent

random field of signals and an unconditional Potts model [42]. The optimal

segmentation corresponds to the global labeling, ω̂, defined by

ω̂ = argmin
ω∈Ω






∑

s∈S

− logP
(
o(s) | ω(s)

)
︸ ︷︷ ︸

εω(s)(s)

+
∑

r,s∈S

Θ (ω(r), ω(s))





(3.42)
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Table 3.2: Comparing the processing speed of our proposed model to three latest
reference methods (using the published frame-rates). Note that [76] does not use any
spatial smoothing (like MRF), and [38] performs only a two-class separation.

M-Brisson05 [76] Sheikh05 [38] Wang06 [40] Proposed
Classes 3 2 3 3

MRF Opt - Graph cut ICM ICM
Frame-rate 10 fps 11 fps 1-2 fps 3 fps

where the minimum is searched over all the possible segmentations (Ω) of a given

input frame. The first part of eq. (3.42) contains the sum of the local class-energy

terms regarding the pixels of the image (see eq. (3.3) and eq. (3.36)). The second

part is responsible for the smooth segmentation: Θ (ω(r), ω(s)) = 0 if s and r are

not neighboring pixels, otherwise:

Θ (ω(r), ω(s)) =

{
−δ if ω(r) = ω(s)
+δ if ω(r) 6= ω(s)

(3.43)

As for optimization, we have found the deterministic Modified Metropolis (MMD)

[53] relaxation method similarly efficient but significantly faster for this task than

the original stochastic SA algorithm mentioned in Section 2.4: processing 320×
240 images runs with 1 fps using it. If we use ICM with our model, the running

speed is 3 fps, in exchange for some degradation in the segmentation results. For

comparison, frame-rates of three latest reference methods are shown in Table 3.2.

We can observe that our model has approximately the same complexity as [40].

Although the speed of [38] and [76] is notably higher, one should consider that [76]

does not use any spatial smoothing (like MRF), thus a separate noise filter must

be applied there in the post-processing phase. On the other hand [38] performs

only a two-class segmentation (background and foreground). That simplification

enables using the quick graph cut based MRF optimization techniques, unlike in

the three-class cases [49].
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3.7 Results

The goal of this section is to demonstrate the benefit of using the introduced

contributions of this chapter: the novel foreground calculus, shadow model and

the benefit of the textural features. The demonstration is done in two ways: in

Fig. 3.12–3.11 we show segmented images by the proposed and previous methods,

while regarding three sequences we perform numerical evaluation.

3.7.1 Test Sequences

We have validated our method on several test sequences, here, we show results

regarding the following 7 videos:

• ‘Laboratory’ test sequence from the ATON benchmark set [28] (available

at http://cvrr.ucsd.edu/aton/shadow/) This shot contains a simple en-

vironment where previous methods [40] have produced already accurate

results.

• ‘Highway’ video (ATON benchmark set). This sequence contains dark shad-

ows but homogenous background without illumination artifacts. Contrast

to [30] our method reaches the appropriate results without post processing,

which is strongly environment-dependent.

• ‘Corridor’ indoor surveillance video. Although, it is on the face of a simple

office environment the bright objects and background elements often satu-

rate the image sensors and it is hard to accurately separate the white shirts

of the people from the white walls in the background.

• 4 surveillance video sequences captured by the ‘Entrance’ (outdoor) camera

of our university campus in different lightning condition. (See Fig 3.6: ‘En-

trance am’, ‘Entrance noon’, ‘Entrance pm’ and ‘Entrance overcast’). These

sequences contain difficult illumination and reflection effects and suffer from

sensor saturation (dark objects and shadows). Here, the presented model

improves the segmentation results significantly versus previous methods.
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Figure 3.9: Shadow model validation: Comparison of different shadow models in 3 video
sequences (From above: ‘Laboratory’,‘Highway’,‘Entrance am’) . Col. 1: video image,
Col. 2: C1C2C3 space based illumination invariants [74]. Col. 3: ‘constant ratio model’
by [30] (without object-based postprocessing) Col 4: Proposed model

3.7.2 Demonstration of the Improvements via Segmented

Images

In the introduction we gave an overview on the state-of-the art methods (Table

3.1) indicating their way of (i) shadow detection (ii) foreground modeling (iii)

textural analysis.

3.7.2.1 Comparison of Shadow Models

Results of different shadow detectors are demonstrated in Fig. 3.9. For the sake of

comparison we have implemented in the same framework an illumination invariant

(‘II’) method based on [74], and a constant ratio model (‘CR’), similarly to [30].

We have observed that the results of the previous and the proposed methods are

similar in simple environments, but our improvements become significant in the

surveillance scenes:

• In the ‘Laboratory’ sequence, the ‘II’ approach is reasonable, while the ‘CR’

and the proposed method are similarly accurate.

Chapter2/Chapter2Figs/shadowDemo.eps
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Figure 3.10: Foreground model validation regarding the ‘Corridor’ sequence. Col. 1:
video image, Col. 2: Result of the preliminary detector. Col. 3: Result with uniform
foreground calculus Col 4: Proposed foreground model

• Regarding the ‘Highway’ video, although the ‘II’ and ‘CR’ find the objects

without shadows approximately, but the results are much noisier than it is

with our model.

• On the ‘Entrance am’ surveillance video, the ‘II’ method fails completely:

shadows are not removed, while the foreground component is also noisy

due to the lack of using luminance features in the model. The ‘CR’ model

produces poor results also: due to the long shadows and various field objects

the constant ratio model becomes inaccurate. Our model handles these

artifacts robustly.

The improvements of the proposed method versus the ‘CR’ model can be also

observed in Fig. 3.14 (2nd and 5th row).

3.7.2.2 Comparison of Foreground Models

In this chapter we have proposed a basically new approach regarding foreground

modeling, which needs neither high frame rate contrasted to [37][38][40], nor high

level object descriptors [78]. Other previous models [30][39] have used the uniform

Chapter2/Chapter2Figs/corridor.eps
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Figure 3.11: Effect of changing the ζ foreground threshold parameter. Row 1: prelim-
inary masks (H), Row 2: results with uniform foreground calculus using εfg(s) = ζ,
Row 3. results with the proposed model. Note: for the uniform model, ζ = −2.5 is the
optimal value with respect to the whole video sequence.

calculus expressing foreground may generate any colors in a given domain with

the same probability. As it is shown in Fig. 3.13, 3.10 and 3.14 (3rd and 5th

rows), the uniform model is often a coarse approximation, and our method is

able to improve the results significantly. Moreover, we have observed that our

model is robust with respect to fine changes in the threshold parameter ζ (an

example is shown in Fig. 3.11, 3rd row). On the other hand, the uniform model is

highly sensitive to set ζ appropriately, even in scenarios which can be segmented

properly with an adequate uniform value (Fig. 3.11, 2nd row).

3.7.2.3 Microstructural Features

Completing the pixel-level feature vector with the microstructural component

enhances the segmentation result if the background or the foreground is textured.

To demonstrate the additional information, Fig. 3.12 shows a synthetic example.

Consider Fig. 3.12a as a frame of a sequence where the bright rectangle in the

middle corresponds to the foreground (image v. shows an enlarged part of it).

Chapter2/Chapter2Figs/zetaTest.eps
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Figure 3.12: Synthetic example to demonstrate the benefits of the microstructural
features. a) input frame, i-v) enlarged parts of the input, b-d) result of foreground
detection based on: (b) gray levels (c) gray levels with vertical and horizontal edge
features [40] (d) proposed model with adaptive kernel

The background consists of four equal rectangular regions, each of them has a

particular texture, which are enlarged in i-iv. images. Similarly to the real-world

case, the observed pixel values are affected by Gaussian noise. Below, we can

see results of background subtraction. First (image b), the feature vector only

consists of the gray value of the pixel. Secondly (image c), we complete it with

horizontal and vertical edge detectors similarly to [40]. Finally (image d), we use

the kernel set of Fig. 3.3, with the proposed kernel selection strategy, providing

the best results.

In Fig 3.14, the 4th and 5th rows show the segmentation results without and with

the textural components, improvements are observable in fine details, especially

near the legs of the people in the magnified regions.

3.7.3 Numerical Evaluation

The evaluations are done through manually generated ground truth sequences.

Since the goal is foreground detection, the crossover between shadow and back-

Chapter2/Chapter2Figs/text3.eps
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Figure 3.13: Foreground model validation: Segmentation results on the ‘Highway’
sequence. Row 1: video image; Row 2: results by uniform foreground model; Row 3:
Results by the proposed model

ground does not count for errors.

Denote the number of correctly identified foreground pixels of the evaluation

images by TP (true positive). Similarly, we introduce FP for misclassified back-

ground points, and FN for misclassified foreground points.

The evaluation metrics consists of the Recall rate and the Precision of the detec-

tion.

Recall =
TP

TP + FN
Precision =

TP

TP + FP
(3.44)

Later on, we will use the F -measure (FM ) [91] which combines Recall (Rc) and

Precision (Pr) in a single efficiency measure (it is the harmonic mean of Rc and

Pr):

FM =
2 · Rc · Pr

Rc + Pr
. (3.45)

Note that while Rc and Pr characterize a given algorithm only together1, FM is

in itself an efficient evaluation metrics.

1Consider an algorithm which classifies each pixel as foreground. It is obviously a
weak segmenter, but its Rc is equal to 1. However, Pr is low in that case.

Chapter2/Chapter2Figs/highwayallzoom2.eps


54
3. BAYESIAN FOREGROUND DETECTION IN UNCERTAIN FRAME

RATE SURVEILLANCE VIDEOS

Figure 3.14: Validation of all improvements in the segmentation regarding ‘Entrance
pm’ video sequence Row 1. Video frames, Row 2. Ground truth Row 3. Segmentation
with the ‘constant ratio’ shadow model [30], Row 4. Our shadow model with ‘uniform
foreground’ calculus [39] Row 5. The proposed model without microstructural features
Row 6. Segmentation results with our final model.

Chapter2/Chapter2Figs/ALLsepmzooms3c.eps
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Table 3.3: Overview on the evaluation parameters regarding the five sequences. Notes:
∗number of frames in the ground truth set. ∗∗ Frame rate of evaluation (fre): number
of frames with ground truth within one second of the video. ∗∗∗Length of the evaluated
video part. †fre was higher in ‘busy’ scenarios.

Video Frames∗ fre∗∗ Duration (min) ∗∗∗

Laboratory 205 2-4 fre† 1:28
Entrance am 160 2 fre 1:20
Entrance pm 75 1 fre 1:15
Entrance noon 251 1 fre 4:21
Highway 170 5-8 fre† 0:29

For numerical validation, we used in the aggregate 861 frames chosen from the

‘Laboratory’, ‘Highway’, ‘Entrance am’, ‘Entrance noon’ and ‘Entrance pm’ se-

quences. Details about the test sets are given in Table 3.3.

As for competitor methods used in the verification procedure, we focus on the

state-of-the-art MRF models, since advantages of using Markov Random Fields

versus morphology based approaches were examined previously [40]. The evalua-

tion of the improvements is done by exchanging our new model elements one by

one for the latest similar solutions in the literature, and we compare the segmen-

tation results.

Regarding shadow detection, the ‘CR’ model is the reference, and we compare

the foreground model to the ‘uniform’ calculus again.

In Fig 3.15, we compare the shadow and foreground model to the reference meth-

ods. The results confirm that our shadow calculus improves the precision rate,

since it decreases the number of false negative detected shadow pixels signifi-

cantly. Due to the foreground model, the recall rate increases through detecting

several background/shadow colored foreground parts. If we ignore both improve-

ments both Rc and Pr decrease. Fig 3.15c shows that regarding the FM -measure

the proposed model outperforms the former ones in all cases.

3.7.4 Influence of CCD Selection on the Shadow Domain

We have introduced a statistical shadow model without any knowledge about the

technical details and embedded control/LUT of the different cameras. Regarding
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a

c

b

• CRS: constant ratio shadow model

• SS: proposed statistical shadow model

• UF: uniform foreground model

• SF: proposed spatial foreground model

Figure 3.15: Comparing the proposed model (red columns) to previous approaches.
The total gain due to the introduced improvements can be got by comparing the cor-
responding CRS+UF and SS+SF columns: regarding the FM measure, the benefit is
more than 12% for three out of the five sequences, 3− 5% for the remaining two ones.
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Figure 3.16: Distribution of the shadowed ψ values in simultaneous sequences from
a street scenario recorded by different CCD cameras. Note: the camera with Bayer
grid has higher noise, hence the corresponding u/v components have higher variance
parameters.

the test sequences, we have had 3 different sources, partly from the Internet. The

paper is dealing with the appropriate color-space, considering that any camera

sensor type can be transformed into such space.

We have performed an additional experiment regarding this issue. We have

recorded simultaneous videos from a street scenario with two different cameras:

a 3CCD digital video camcorder and a conventional digital camera, which uses

a Bayer grid. By examining the corresponding shadow domains (see Fig. 3.16),

we can observe that the distributions of the shadowed ψ values are very similar.

However, the higher noise of the Bayer grid camera results in higher variance

parameters regarding the u and v components.

3.8 Conclusion of the Chapter

The present chapter has introduced a general model for foreground segmentation

without any restrictions on a priori probabilities, image quality, objects’ shapes

and speed. The frame rate of the source videos might also be low or unstable,

Chapter2/Chapter2Figs/figB8_cameraCCD.eps
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while the method is able to adapt to the changes in lighting conditions. We have

contributed to the state-of-the-art in three areas: (1) we have introduced a more

accurate, adaptive shadow model; (2) we have developed a novel description for

the foreground based on spatial statistics of the neighboring pixel values; (3) We

have shown how different microstructure responses can be used in the proposed

framework as additional feature components improving the results.

We have compared each contribution of our model to previous solutions in the

literature, and observed its superiority. The proposed method now works in a

real-life surveillance system (see Fig. 3.6) and its efficiency has been validated.



Chapter 4

Color Space Selection in Cast
Shadow Detection

In this chapter we focus on a particular aspect of shadow detection: we illustrate

that the performance of segmentation can be significantly improved through ap-

propriate color space selection, if for practical purposes, we should keep the num-

ber of free parameters of the method low. We show experimental results regarding

the following questions:

• What is the gain of using color images instead of grayscale ones?

• What is the gain of using uncorrelated spaces instead of the standard RGB?

• Are chrominance (illumination invariant), luminance, or ‘mixed’ spaces

more efficient?

• In which scenes are the differences significant?

We qualify the metrics both in color based clustering of the individual pixels

and in the case of Bayesian foreground-background-shadow segmentation through

generalizing the model introduced in Chapter 3. Experimental results on the test

videos show that CIE L*u*v* color space is the most efficient in both cases.

59
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4.1 Introduction

Appropriate color space selection is a crucial step for many image processing

problems [72][92][93]. Since the shadow model proposed in Chapter 3 is primar-

ily based on describing the shadow’s color domain, issues on color spaces should

also be investigated in this case. Although shadow detection is a very well exam-

ined problem and some comparative works [28][94] have also been published in

this topic, previous reviews classify and compare the existing methods based on

their model structures. The authors [28] note that the methods work in different

color spaces, like RGB [30] and HSV [29]. However, it remains open-ended, how

important is the appropriate color space selection, and which color space is the

most effective regarding shadow detection. Moreover, we find also further exam-

ples: [37] used only gray levels for shadow segmentation, other approaches were

dealing with the CIE L*u*v* [76] and CIE L*a*b* [95] spaces, respectively (an

overview is in Table 4.1). Note that an experimental evaluation of color spaces

has been already done for shadow edge classification in [72], but in the current

thesis, we address the detection of the shadowed and foreground regions, which

is a fairly different problem.

For the above reasons, the main issue of this chapter is to give an experimen-

tal comparison of different color models regarding cast shadow detection on the

video frames. Of course, the validity of such experiments is limited to the exam-

ined model structures, thus it is important to make the comparison in a relevant

framework. Taking a general approach, we consider the task as a classification

problem in the space of the extracted features, describing the different cluster

domains with relatively few free parameters.1

As mentioned in the introduction models in the literature use usually determinis-

tic (per pixel, e.g. [29])) or statistical (probabilistic, see [30]) approaches. Up to

now, we have only dealt with statistical models, since they are more advantageous

considering the whole segmentation process. On the contrary, here we introduce a

deterministic method first, where the pixels are classified independently before the

rate of the correct pixel-classification is investigated. That way, we can perform

1Most models in Table 4.1 also contain 2 parameters for each color channel, draw-
backs of methods using less parameters have been emphasized in Chapter 3.
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a relevant quantitative comparison of the different color spaces, since the decision

for each pixel depends only on the corresponding local color-feature value; post

processing and a priory effects whose efficiency may be environment-dependent

do not take account here. Thereafter, we give a probabilistic interpretation to

this model and we insert it to the adaptive MRF framework which was introduced

in Chapter 3. We also compare the results after MRF optimization qualitatively

and quantitatively.

Consequently, this chapter can be considered both as premise and generalization

of Chapter 3. Our previous choice for using the CIE L*u*v* space will be justified

here, but on the other hand, experiments will refer to the previously introduced

model elements, extending their validity to various color models. Reasons for

dedicating an independent chapter to this issue is that statistical feature model-

ing and color space analysis are two different and in themselves composite aspects

of shadow detection. Although interaction between the two approaches will be

emphasized several times, the separate discussion helps the clarity of presenta-

tion. Note as well that due to the various experiments the consequences of this

chapter may be more generally usable than in the context of the proposed MRF

model.

4.2 Feature Vector

Feature extraction is done similarly to Chapter 3, but here we give a generaliza-

tion of the ψ shadow features to handle different color spaces.

We remind the Reader of the constant ratio model introduced in Section 3.3.3.1,

where the ratio of the shadowed and illuminated sensor values have been con-

sidered near constant over the images. To handle the different artifacts, one can

prescribe a domain [96] or a distribution (see Section 3.3.3.2 of this thesis) instead

of a single value for the ratios, which results in a powerful detector.

Next, we should examine, how one can use this approach in different color sys-

tems. We begin the description with some notes. We assume that the camera

presents the frames in the RGB space, and for the different color space conver-

sions, we use the formulas of [97]. The ITU D65 standard is used again for the

calibration of the CIE L*u*v* and L*a*b* spaces.



62 4. COLOR SPACE SELECTION IN CAST SHADOW DETECTION

Table 4.1: Overview on state-of-the-art methods. † In cases of parametric methods,
the (average) number of shadow parameters for one color channel. ‡Proportional to the
number of support vectors after supervised training.

Method Color space Number of param./
color channels†

Cavallaro 2004 [73] rg invariant
Salvador 2004 [74] C1C2C3 invariant
Paragios 2001 [35] rg invariant
Mikic 2000 [30] RGB 1
Rittscher 2002[37] grayscale 2
Wang 2006 [40] grayscale 2
Cucchiara 2001 [29] HSV 1.33
Martel-Brisson 2005 [76] CIE L*u*v* 2
Rautiainen 2001 [95] CIE L*a*b*/HSV N.a.
Siala 2004 [96] RGB N.a.‡

Proposed All from above 2

Table 4.2: Luminance-related and chrominance channels in different color spaces

Color space gray rg C1C2C3 HSV RGB L*a*b* L*u*v*
luminance ch. g - - H R,G,B L* L*

chrominance ch. - r,g C1,C2,C3 S,V - a*,b* u*,v*

As we did in the CIE L*u*v* based model (page 31) we will separately handle the

color components which are directly related to the brightness of the pixels (we

refer to them later as ‘luminance’ components), and the remaining ones which

correspond to ‘chrominances’ of the observed colors. Classification of channels

regarding different color spaces can be found in Table 4.2. In this way, we can also

classify the color spaces: since the normalized rg and C1C2C3 spaces contain only

chrominance components we will call them ‘chrominance spaces’, while grayscale

and RGB are purely ‘luminance spaces’. In this terminology, HSV, CIE L*u*v*

and L*a*b* are ‘mixed spaces’.

The shadow descriptor is derived in an analogous manner to the approach

of Section 3.3.3.2: the ‘probabilistic ratio’ method is used for the ‘luminance’
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components, while the offsets between the shadowed and illuminated ‘chromi-

nance’ values of the pixels are modelled by a Gaussian additive term. In sum-

mary, if the current value of a given pixel in a given color space is [o0, o1, o2]

(indices 0, 1, 2 correspond to the different color components), the estimated (il-

luminated) background value is there [µbg,0, µbg,1, µbg,2], we define the shadow

descriptor ψ = [ψ0, ψ1, ψ2] by the following, for i = {0, 1, 2}:

• If i is the index of a ‘luminance’ component:

ψi(s) =
oi(s)

µbg,i(s)
. (4.1)

• If i is the index of a ‘chrominance’ component:

ψi(s) = oi(s)− µbg,i(s). (4.2)

We define the descriptor in grayscale and in the rg space similarly to eq. (4.1) and

(4.2) considering that ψ will be a one and a two dimensional vector, respectively.

The efficiency of the proposed feature selection regarding three color spaces can

be observed in Fig. 4.1, where we plot the one dimensional marginal histograms of

the occurring ψ0, ψ1 and ψ2 values for manually marked shadowed and foreground

points of a 75-frames long outdoor surveillance video sequence (‘Entrance pm’).

Apart from some outliers, the shadowed ψi values lie for each color space and

each color component in a ‘short’ interval, while the difference of the upper and

lower bounds of the foreground values is usually greater.

4.3 Deterministic Classifier

In this section, we temporarily put aside the MRF concept, and taking a determin-

istic approach, we consider the shadow detection problem as a simple classification

task in the ψ-feature space. Considering Fig. 4.1, an important note should be

taken here. While the ψ statistics characterizes the scene and illumination condi-

tions, the foreground ψ histograms only correspond to the occurring foreground

objects in the evaluated sequence. On the other hand, an efficient shadow model is

expected to work with differently colored objects as well. Therefore, the upcom-

ing discrimination process will follow a one-class-classification approach: pixel
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s will by classified as a shadowed point, if its ψ(s) value lies in the estimated

shadow domain, and the outlier points will be labeled as foreground. As usual,

the shadow domain is defined by a manifold having a prescribed number of free

parameters, which fit the model to a given scene/situation. For grayscale images

shadowed ψ features should be included by an interval [40], while regarding color

scenes different domain models are used in the literature, like a three dimensional

rectangular bin [29] (ratio/difference values for each channel lie between defined

threshold), an ellipsoid [30], or the domain may have general shape [96]. In the

latter case a Support Vector Domain description is proposed in the RGB color

ratios’ space.

By each domain-selection we must consider overlap between the classes, e.g. fore-

ground points may appear whose feature values lie in the shadow domain. There-

fore, the optimal domain should be as narrow as possible meanwhile containing

‘almost all’ the feature values corresponding to the occurring shadowed points.

Accordingly, if we ‘only’ prescribe that a shadow descriptor should be accurate,

the most general domain shape seems to be the most appropriate. However, in

practise, we also have to consider issues of parameter estimation and adaption

(see Section 3.5.2). Therefore, we prefer the domains with relatively few free

parameters, for which we can construct an automatic update strategy.

Observe that according to Fig. 4.1, the shadowed ψ0, ψ1 and ψ2 values follow

approximately normal distributions, therefore, a 3D joint normal representation

of the ψ features in shadows is straightforward (similarly to Chapter 3). Since

the equipotential surfaces of the 3D Gaussian density functions are ellipsoids, a

natural choice is using an elliptical shadow domain boundary. We will use the

equation of a standard ellipsoid body having parallel axes with the coordinate

axes in the ψ0 − ψ1 − ψ2 Cartesian coordinate system:

Pixel s is shadowed⇔
2∑

i=0

(
ψi(s)− ai

bi

)2

≤ 1, (4.3)

where [a0, a1, a2] is the coordinate of the ellipsoid center and (b0, b1, b2) are the

semi-axis lengths. In other words, [a0, a1, a2] is equivalent to the mean ψ(s) value

of shadowed pixels in a given scene, while b0, b1 and b2 depend on the spatiotem-

poral variance of the ψ(s) measurements under shadows. Later on we will show
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that the similarity to the µψ and σψ parameters from Chapter 3 is not by chance,

thus, parameter adaption can also be done in a similar manner.

Note that with the SVM method [96], the number of free parameters is related to

the number of the support vectors, which can be much greater than the six scalars

of our model. Moreover, for each situation, a novel SVM should be trained. Note

as well that one could use an arbitrarily oriented ellipsoid, but compared to eq.

4.3, it is also more difficult to define, since it needs the accurate estimation of 9

parameters.

For the sake of completeness, we note that the domain defined by eq. (4.3) be-

comes an interval if we work with grayscale images, and a two dimensional ellipse

in the rg space.

Fig. 4.2 shows the two dimensional scatter plots about the occurring foreground

and shadow ψ values. We can observe here that the components of vector ψ

are strongly correlated in the RGB space (and also in C1C2C3), and the previ-

ously defined ellipse cannot present a narrow boundary. In the HSV space, the

shadowed values are not within a convex hull, even if we considered that the hue

component is actually periodical (hue = k ∗ 2π means the same color for each

k = 0, 1, . . .). Based on the above facts, the CIE L*u*v* space seems to be a

good choice. In the following, we support this statement by numerical results.

4.3.1 Evaluation of the Deterministic Model

The evaluations were done through manually generated ground truth sequences

regarding five of the previously introduced test videos: namely the ‘Laboratory’,

‘Highway’, ‘Entrance am’, ‘Entrance noon’ and ‘Entrance pm’ sequences, with

the same test parameters as before (see Table 3.3 in page 55 for details).

In this section, we show the tentative limits of the elliptical shadow domain

defined by eq. (4.3). The goal of these experiments is to compare the foreground-

shadow discriminating ability of the different color spaces purely based on the

extracted per pixel ψ features. Therefore, we set here the parameters manually,

and do not take into consideration local connectivity or post processing.

In the upcoming experiments, we collect for each test sequence two sets of ψ values
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Figure 4.1: One dimensional projection of histograms of shadow (above) and fore-
ground (below) ψ values in the ‘Entrance pm’ test sequence.

Figure 4.2: Two dimensional projection of foreground (red) and shadow (blue) ψ values
in the ’Entrance pm’ test sequence. Green ellipse is the projection of the optimized
shadow boundary.

Chapter3/Chapter3Figs/figB1_histograms.eps
Chapter3/Chapter3Figs/figB2_2dstats.eps
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corresponding to manually marked foreground and shadowed pixels, respectively.

We investigate on the correct-classification-rates of the pixels by using the ellipse

model (eq. 4.3) with different color spaces. We henceforward use the Recall (Rc),

Precision (Pr) measures, which were introduced in Section 3.7.3.

For some optimized ellipse parameters, we plot the corresponding Precision and

Recall values regarding the ‘Laboratory’ and ‘Entrance pm’ test sequences in Fig.

4.3. We can observe that the CIE L*a*b* and L*u*v* spaces produce the best

results in both cases (the corresponding Pr/Rc curves are the highest). However,

the relative performance of the other color systems is strongly different regarding

the two videos. In the indoor scene, the grayscale and RGB segmentations are

less efficient than the other ones, while regarding the ‘Entrance pm’ sequence,

the performance of the chrominance spaces is prominently poor.

In the further tests, we will use the FM -measure (eq. 3.45). We summarized

the FM rates in Fig. 4.4, regarding the test sequences. Also here, we can

see that the CIE L*a*b* and L*u*v* spaces are the most efficient. As for the

other color systems, in sequences containing dark shadows (‘Entrance pm’, ‘High-

way’), the ‘chrominance spaces’ produce poor results, while the gray, RGB and

L*a*b*/L*u*v* results are similarly effective. If the shadow is brighter (‘En-

trance am’, ‘Laboratory’), the performance of the ‘chrominance spaces’ becomes

reasonable, but the ‘luminance spaces’ are relatively poor. In the latter case,

the color constancy of the chrominance channels seems to be more relevant than

the luminance-darkening domain. We have also observed that the hue coordinate

in HSV is very sensitive to the illumination artifacts (see also Fig. 4.1), thus

the HSV space is more efficient in case of light-shadows. We give a summary

about the relationship between the darkness of shadow and the performance of

color spaces in Table 4.3, where ‘darkness’ is characterized by the mean of the

grayscale-ψ0 values of shadowed points.

4.4 MRF Segmentation with Different Color Spaces

The results in the previous section confirm that using the elliptical shadow domain

defined by eq. 4.3, the CIE L*u*v* color space is the most efficient regarding

the separation of shadowed and foreground pixels. However, those experiments
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Figure 4.3: Evaluation of the deterministic model. Recall-precision curves correspond-
ing to different parameter-settings on the ‘Laboratory’ and ‘Entrance pm’ sequences.

Figure 4.4: Evaluation of the deterministic model. FM coefficient (eq. 3.45) regarding
different sequences

Table 4.3: Indicating the two most successful and the two less efficient color spaces
regarding each test sequence, based on the experiments of Section 4.3.1 (For numerical
evaluation see Fig. 4.3 and 4.4). To compare the scenarios, we also denote †the mean
darkening factor of shadows in grayscale.

Video Scene Dark† Worst Best
Laboratory indoor 0.73 gray, RGB Luv, Lab
Entrance am outdoor 0.50 gray, RGB Luv, Lab
Entrance pm outdoor 0.39 C1C2C3, rg Luv, Lab
Entrance noon outdoor 0.35 C1C2C3, rg Luv, Lab
Highway outdoor 0.23 C1C2C3, rg Luv, Lab

Chapter3/Chapter3Figs/figB3_pr_plots_extended_grayB.eps
Chapter3/Chapter3Figs/figB4_f_det_extended.eps
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needed manually evaluated training data to set the parameters. In the following,

we suit the above model to the adaptive Bayesian model-framework of Chapter

3, and show that the advantage of using the appropriate color space can be also

measured directly in the applications.

Here, the optimal segmentation corresponds to the labeling defined by:

ω̂ = argmin
ω∈Ω

{
∑

s∈S

− log pω(s)(s) +
∑

r,s∈S

Θ (ω(r), ω(s))

}
. (4.4)

The definition of the density functions pbg(s) and pfg(s) s ∈ S is the same, as we

defined in Chapter 3.

Before inserting our model into the MRF framework, we give to the shadow-

classification step defined in Section 4.3, a probabilistic interpretation. We rewrite

eq. (4.3): we match the current ψ(s) value of pixel s to a probability density

function f
(
ψ(s)

)
, and decide its class by:

pixel s is shadowed⇔ f
(
ψ(s)

)
≥ t. (4.5)

Based on the one dimensional marginal histograms in Fig. 4.1, we model f
(
ψ(s)

)

by a multi variate Gaussian density function, similarly to the CIE L*u*v* case

introduced in Chapter 3. To keep the six-parameter shadow model, a diagonal

covariance matrix will be used (i.e. the three element-mean value vector, and the

three diagonal components of the covariance matrix should be defined). In this

way, we model the variety of the ψ values observed in shadows, which variety is

caused by camera noise, fine alterations in illumination, and differences in albedo

and geometry of the different surface points. However, the changes in the dif-

ferent color components are considered to be independent exploiting that many

color spaces (like CIE L*u*v*, CIE L*a*b*, HSV) have approximately uncorre-

lated basis [84]. As for the RGB space, this ‘diagonal’ approach is less accurate.

However, we show later on that for most of the sequences the performance of this

oversimplified RGB-model is also reasonable.

Based on Theorem 2 in Appendix A (page 132), the domains defined by eq. (4.3)

and eq. (4.5) are equivalent, if f is a Gaussian density function (η):

f
(
ψ(s)

)
= η(ψ(s), µψ,Σψ) = (4.6)
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=
1

(2π)
3
2

√
det Σψ

exp

[
−1

2
(ψ(s)− µψ)TΣ

−1

ψ (ψ(s)− µψ)
]

(4.7)

with the following parameters:

µψ = [a0, a1, a2]
T , Σψ = diag{b20, b21, b22}, (4.8)

while

t = (2π)−
3
2 (b0b1b2)

−1e−
1
2 . (4.9)

In the following, we use the previously defined probability density functions in

the MRF model in a straightforward way:

psh(s) = f
(
ψ(s)

)
. (4.10)

The flexibility of this MRF model comes from the fact that we defined ψ(s)

shadow descriptors for different color spaces differently in Section 4.2.

4.4.1 MRF Test Results

Fig. 4.5 shows the MRF-segmentation results of two frames from each test se-

quence using five color spaces: grayscale, C1C2C3, HSV, RGB and CIE L*u*v*.

(Note that in the experiments, the results of the CIE L*a*b* space have been

very similar to the L*u*v* outputs, while the rg has worked similarly to C1C2C3,

thus we skip them in this comparison). We can observe that the CIE L*u*v*

space outperforms the other ones significantly, while we get the largest errors

with C1C2C3, especially in the cases of sharp shadows. We find a typical prob-

lem regarding the HSV and RGB spaces: foreground ‘glories’ may appear around

some dark shadowed parts due to the penumbra of cast shadow [74] and video

compression. These erroneous areas correspond to shadows, but they are lighter

than the central areas, thus they get out of the shadow domain in the feature

space. On the other hand, the proposed probabilistic model removes these arti-

facts with the other color spaces.
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Figure 4.5: MRF segmentation results with different color models. Test sequences (up
to down): rows 1-2 ‘Laboratory’, rows 3-4: ‘Highway’, rows 5-6: ‘Entrance am’, rows
7-8: ‘Entrance pm’, rows 9-10: ‘Entrance noon’.
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Figure 4.6: Evaluation of the MRF model. F ∗ coefficient regarding different se-
quences

Hereinafter, we perform quantitative evaluations using the MRF model. In Sec-

tion 4.3.1, we measured purely the ability to discriminate foreground and shad-

owed pixels. Since the present model uses three classes and the goal is accu-

rate foreground detection, we should also consider the confusion rate between

foreground and background. However, similarly to Section 3.7.3 the crossover

between shadow and background does not count for errors (both of them are

non-foreground areas).

We observe in Fig. 4.6 the clear superiority of the CIE L*u*v* space. However,

the relative performance of the color spaces does not show exactly the same ten-

dencies as we have measured in Section 4.3.1. The differences between Fig. 4.4

and 4.6 are caused by effects of the composite foreground model, MRF neigh-

borhood conditions and errors in parameter estimation, since the artifacts may

appear differently in the different sequences. Therefore, we consider the numerical

results from Section 4.3.1 to be more relevant to characterize the capabilities of

the color spaces for shadow separation. However, the experiments of this section

confirm that appropriate color space selection is also crucial in the applications,

and the CIE L*u*v* space is preferred for this task.

4.5 Conclusion of the Chapter

This chapter has examined the color modeling problem of shadow detection. We

have generalized the model framework of Chapter 3 for this task, which can

work with different color spaces. With this model, we compared several well

known color spaces, and observed that the appropriate color space selection is an

Chapter3/Chapter3Figs/figB6_f_mrf_extended.eps
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important issue regarding the segmentation results. We validated our method on

five video shots, including well-known benchmark videos and real-life surveillance

sequences, indoor and outdoor shots, which contain both dark and light shadows.

Experimental results show that CIE L*u*v* color space is the most efficient both

in the color based clustering of the individual pixels and in the case of Bayesian

foreground-background-shadow segmentation.





Chapter 5

A Three-Layer MRF Model for
Object Motion Detection in
Airborne Images

In this chapter, a probabilistic model is proposed for automatic change detec-

tion on airborne images captured by moving cameras. To ensure robustness,

an unsupervised coarse matching is used instead of a precise image registration.

The challenge of the proposed model is to eliminate the registration errors, noise

and the parallax artifacts caused by the static objects having considerable height

(buildings, trees, walls etc.) from the difference image. The background mem-

bership of a given image point is described through two different features, and

a novel three-layer Markov Random Field (MRF) model is introduced to ensure

connected homogenous regions in the segmented image.

75
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5.1 Introduction

Object motion detection is a key issue in aerial surveillance and exploitation

[19]. An important preprocessing task is identifying the accurate silhouettes of

moving objects or object-groups in urban roads carrying a great deal of traffic.

In this chapter, we focus on this problem dealing with image pairs taken by

moving airborne vehicles in consecutive moment. The task needs significantly

different approaches in scene modeling and regarding the integration of different

measurements from solutions used in the previous chapters. Thus, we begin with

short overviews on these issues. The following notations will be used: G1 and

G2 are two consecutive frames of the image sequence above the same pixel lattice

S. The gray value of a given pixel s ∈ S is g1(s) in the first image and g2(s) in

the second one. A pixel is defined by a two dimensional vector containing its x-y

coordinates: s = [sx, sy], sx = 1...W, sy = 1...H.

5.1.1 Effects of Camera Motion in 3D Geometry

In Chapters 3 and 4, we have considered change detection as a purely 2D im-

age segmentation problem marking the pixels with foreground, background or

shadow labels. In fact, classifying a pixel s to ‘background’ means that a 3D

scene point, which is projected to the s pixel of the image plane, corresponds to

the background in the 3D environment. Using a static camera, it is not needed

to model the relationship between the 2D image plane and the 3D world, since in

a given pixel position, the same background surface point (with the same color)

is permanently observable, unless it is occluded by a foreground object. On the

other hand, in case of camera motion the static ‘voxels’ of the scene are projected

to different pixel positions in the consecutive frames (see Fig. 5.1a). Finding the

corresponding pixels in the images which represent the same 3D scene points is

called image registration.

Although registration is one of the fundamental problems of image processing,

we still find challenges in the context of the current application. Here, we try to

demonstrate a few of them. An important approach is based on feature corre-

spondence, where the goal is looking for corresponding pixels or other primitives

such as edges, corners, contours, shape etc. in the images which are compared
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[98][99][100][101][102]. Unfortunately, these procedures may fail at occlusion

boundaries and within regions where the chosen primitives or features cannot

be reliably detected. Although we can find methods focusing on the reduction of

errors at object boundaries caused by occlusion [103][104], these approaches work

with slightly different images used in stereo vision. On the other hand, taking the

photos from a rapidly moving airborne vehicle may cause i.a. significant global

offset and rotation between the consecutive frames. As for the synthesis of wide-

baseline composite views, [105] presented a motion-based method for automatic

registration of images in multi-camera systems. However, the latter method needs

video flows recorded by static cameras, while in the present application we have

only one image in each camera position.

In summary, using the existing techniques we must expect that feature match-

ing presents correct pixel correspondences only for sparsely distributed feature

points instead of matching the two frames completely. A possible way to handle

this problem is searching for a global projective transform T between the images.

Thus, for a given pixel r = [rx, ry] of the second frame, the corresponding pixel

position s = [sx, sy] in the first frame is approximated as: s ≈ r̃ = T(r). Using

that an arbitrary projective transform can be represented by a linear transform

of homogeneous coordinates [111, p. 3], T can be written in matrix form:

[px, py, pw]T = T · [rx, ry, 1]T (5.1)

where r̃x = px/pw, r̃y = py/pw, r̃ = [r̃x, r̃y] and T is the 3× 3 homography matrix

of transform T. Here er = s − r̃ is the error of approximation at pixel r. In

the following, we denote by G̃2 the warped second image, which is obtained by

applying T for G2, thus its pixel values are g̃2(r) = g2 (T−1(r)).

The above defined procedure is called 2D image matching [106], and two main

approaches are available for unsupervised estimation of T . Pixel correspondence

based techniques estimate the optimal coordinate transform (e.g. homography)

which maps the extracted feature points of the first image to the correspond-

ing pixels identified by the feature tracker module in the second frame [102]. In

global correlation methods, the goal is to find the parameters of a similarity [107]

or affine transform [108] for which the correlation between the original first and
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transformed second image is maximal. For computational purposes, global cor-

relation methods work in the Fourier domain.

Although we find sophisticated ways to enhance the accuracy of the linear 2D

mappings [109] (up to subpixel accuracy: [110]), these approaches only result in

reasonable registration if the scene can be approximated by a flat surface [111,

p. 8], the camera is very far from the ground plane or the camera motion is

slight [109]. Otherwise, scene points out of the dominant plane (e.g. the plane

of the roadway in a street scene) cause significantly different 2D displacements

than calculated by the global projective transform. This effect is called parallax

distortion (see Fig. 5.2).

To overcome this problem ‘plane+parallax’ (P+P) models have become widely

used: we also follow this way in this chapter. Here, the images are registered up to

a global 2D projective transform, thereafter the parallax is locally handled. As it

is pointed out in [106], different environmental conditions and circumstances may

raise essentially different challenges, thus ‘P+P’ methods can be onward divided

into subcategories. An example for ‘sparse parallax’ is given in [112], which deals

with very low altitude aerial videos captured from sparsely cultural scenes, where

shape constancy constraints can be used together with global motion estimation.

In that case, the ‘3Dness’ of the scene is sparsely distributed containing a few

moving objects, while the algorithm needs at least three frames from a video

sequence. On the other hand, for scenarios being investigated in the current ap-

plication a ‘dense parallax’ method should be developed, since both the 3D static

objects and object motions may occur densely in the scene. Here, compared to

[112], the frames are captured from higher altitude, and the parallax distortions

after 2D registration usually cause errors of a few pixels. Consequently, if s and

r are the corresponding pixels in G1 and G2, respectively, we assume that the

magnitude of the 2D estimation error, ||er|| = ||s− r̃|| is lower than a threshold

parameter. In other words, for a given r, the corresponding pixel s should be

searched in a given neighborhood of r̃ denoted by Hr̃. We will use rectangular

neighborhoods with a fixed size (see Fig. 5.1b). Note that using Hr̃ is symmetric:

for a given s in G1, the corresponding pixel in the G̃2 transformed image, r̃, is in

the rectangular neighborhood of s, Hs.

Since the length and orientation of the parallax error vectors er are different at
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Figure 5.1: a) Illustrating the stereo problem in 3D. E1 and E2 are the optical centers
of the cameras taking G1 and G2 respectively. P is a point in the 3D scene, s and r
are its projections in the image planes. b) A possible arrangement of pixels r, r̃ and s;
the 2D search region, Hr̃. er is the error of the projective estimation, r̃ for s.

the different r pixel positions, the above approach does not solve the exact pixel

matching problem, which may still remain difficult. It can only be stated that

s lies in the search region Hr̃ assigned to r, unless it corresponds to an object

displacement. A key point in our approach is that the proposed model will not

aim at finding the corresponding point pairs. We get around this problem in a

statistical way, via a probabilistic description of the local search regions.

Note that the model does not exploit the well known epipolar constraint [111, p.

240]. As emphasized in [106], the performance of such approaches is very sensi-

tive to find the accurate epipoles, which may fail if, besides camera motion, many

independent object displacements are present in the scene.

As for further corresponding issues, in this chapter we search for object dis-

placement in image pairs taken with approximately 1-2 second time difference. It

should be emphasized here that this is a different task from processing high frame

rate aerial videos [115][116], where the camera motion can be predicted based on

previously processed frames.

As being noted earlier, we will introduce a two stage algorithm which consists of

a coarse 2D image registration for camera motion compensation, and a parallax

Chapter4/Chapter4Figs/noepip_3d_2d.eps


80
5. A THREE-LAYER MRF MODEL FOR OBJECT MOTION

DETECTION IN AIRBORNE IMAGES

error-eliminating step. From this point of view, this approach is similar to [117],

where the authors assume that 2D registration errors mainly appear near sharp

edges. Therefore, at locations where the magnitude of the gradient is large in

both images, they consider that the differences of the corresponding pixel-values

are caused with higher probability by registration errors than by object displace-

ments. However, this method is less effective, if there are several small objects

(containing several edges) in the scene, because the post processing may also

remove some real objects, but it leaves errors in smoothed textured areas (e.g.

group of trees, corresponding test results are shown in Section 5.9).

5.1.2 Approaches on Observation Fusion

Another important issue is related to feature selection. Scalar valued features

may be weak to model complex classes appropriately, therefore integration of

multiple observations has been intensively examined recently for different prob-

lems [40][45]-[48][82][118][119][120][121][122][123]. For observation fusion, we have

already given an example in Chapter 3, where different color components and

microstructural responses have been integrated in an n(= 4) dimensional feature

vector, and for each class, the distribution of the features has been approxi-

mated by an n dimensional multinomial density function (for another similar

fusion example, see [120]). However, this straightforward approach may fail re-

garding several practical problems: although the feature vector’s one dimensional

marginal distributions can be often modelled well with well-known densities (e.g.

Gaussian, Beta, uniform, or a finite mixture of them), the joint distribution may

be hard to express. As shown later this problem raises such challenge, since the

first feature-dimension will be modelled by a Gaussian term while the second one

follows a Beta distribution. Moreover, efficient methods for probability calcula-

tion and parameter estimation are only available for certain distributions. The

correspondence between the feature components may be also difficult to model,

or, at least, increases the number of free parameters (e.g. the Gaussian correla-

tion matrix must be non-diagonal).

For the above reasons, multi-layer models have became popular nowadays [45]

[46][47][48]. In this case, individual layers are assigned to the different feature
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components (or to a group of components). Each layer’s segmentation is di-

rectly influenced by its corresponding measurement component(s) and indirectly

by features of the other layers. The inter-layer connections may achieve data in-

teraction [45][46][48] (the inter-layer interactions also use the features’ data and

the segmentation labels directly) or label fusion [122][124] (the interactions use

only the labels in the different layers). Usually, the right choice between these

two approaches depends on the domain which we model. We show later that

regarding the problem, which we investigate in this chapter, the label fusion is a

more natural model.

In this chapter, we follow a Bayesian approach to tackle the above change de-

tection problem. We derive features describing the background membership of a

given image point in two independent ways, and develop a three-layer Bayesian

labeling model to integrate the effects of the different features. We use a similar

model structure to [45]-[48], which has two layers corresponding to the different

observations, and a third one presenting the final foreground-background segmen-

tation result. However, there are two essential differences: while in [45]-[48], the

segmentation classes in the combined layer were constructed as the cross product

of the classes at the observation layers, we use the same classes in each layer:

foreground and background. On the other hand, we define the inter-layer connec-

tions also differently: in [45]-[48], the observation layers were directly connected

with the segmentation layer via doubleton cliques, while we define connections

between all three layers via cliques of node-triples.

5.2 2D Image Registration

In this section, we introduce briefly two approaches on coarse 2D image registra-

tion. Thereafter, we compare the methods on the images of our datasets, and

we choose the most appropriate one to be the preprocessing step of our Bayesian

labeling model.
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Figure 5.2: Illustration of the parallax effect, if a rectangular high object appears on
the ground plane. We mark different sections with different colors on the ground and
on the object, and plot their projection on the image plane with the same color. We
can observe that the appearance of the corresponding sections is significantly different.

5.2.1 Pixel-Correspondence Based Homography Match-
ing (PCH)

This approach consists of two consecutive steps. First, corresponding pixels are

collected in the images (for an example see [113][114]), thereafter, the optimal

coordinate transform is estimated between the elements of the extracted point

pairs [102]. Therefore, only the first step is influenced directly by the observed

image data, and the method may fail if the feature tracker produces poor result.

On the other hand, we can obtain an arbitrary projective transform in this way.

The set of the resulting point pairs contains several outliers, which are filtered

out by the RANSAC algorithm [111, p. 290], while the optimal homography is

estimated so that the back-projection error is minimized [125].

5.2.2 FFT-Correlation Based Similarity Transform (FCS)

Reddy and Chatterji [107] proposed an automatic and robust method for regis-

tering images, which are related via a similarity transform (translation, rotation

and scaling). In this approach, the goal is to find the parameters of the similarity

transform T for which the correlation between G1 and G̃2 = T(G2) is maximal.

The method is based on the Fourier shift theorem. In the first step, we assume

Chapter4/Chapter4Figs/parallax.eps


5.2 2D Image Registration 83

that G1 and G2 images differ only in displacement, namely there exists an offset

vector d∗, for which g1(s) = g2(s+d∗) : ∀s, s+d∗ ∈ S. Let us denote with Gd
2 the

image we get by shifting G2 with offset d. In this case, d∗ = argmaxdR(d), where

R is the correlation map: R(d) = Corr{G1, G
d
2}. R can be determined efficiently

in the Fourier domain. Let F1 and F2 be the Fourier transforms of the images

G1 and G2. We define the Cross Power Spectrum (CPS) by:

CPS(i, k) =
F1(i, k) · F2(i, k)

|F1(i, k) · F2(i, k)|
= ej2π(dxi+dyk), (5.2)

where F2 means the complex conjugate of F2. Finally, the inverse Fourier trans-

form of the CPS is equal with the correlation map R [107].

The Fourier shift theorem also offers a way to determine the angle of the rotation.

Assume that G2 is a translated and rotated replica of G1, where the translation

vector is o and the angle of rotation is α0. It can be shown that considering |F1|
and |F2| as images, |F2| is the purely rotated replica of |F1| with angle α0. On

the other hand, rotation in the Cartesian coordinate system is equivalent to a

translational displacement in the polar representation [107], which can be calcu-

lated similarly to the determination of d∗.

The scaling factor of the optimal similarity transform may be retrieved in an

analogous way [107].

In summary, we can determine the optimal similarity transform T between the

two images based on [107], and derive the (coarsely) registered second image, G̃2.

5.2.3 Experimental Comparison of PCH and FCS

The PCH and FCS algorithms have been tested on our test image pairs. Obvi-

ously, both gives only a coarse registration, which is inaccurate and is disturbed

by parallax artifacts. In fact, FCS is less effective if the projective distortion

between the images is significant. The weak point of PCH appears if the object

motion is dense, thus a lot of point pairs may be in moving objects, and the auto-

matic outlier filtering may fail, or at least, the homography estimation becomes

inaccurate.

In our test database, the latter artifacts are more significant, since the corners of

the several moving cars present dominant features for the Lucas-Kanade tracker.
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Figure 5.3: Qualitative illustration of the coarse registration results presented by the
FFT-Correlation based similarity transform (FCS), and the pixel-correspondence based
homography matching (PCH). In col 3 and 4, we find the thresholded difference of the
registered images. Both results are quite noisy, but using FCS, the errors are limited
to the static object boundaries, while regarding P#25 and P#52 the PCH registration
is erroneous. Our Bayesian post processing is able to remove the FCS errors, but it
cannot deal with the demonstrated PCH gaps.
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Figure 5.4: Feature selection. Notations are in the text of Section 5.4.

Some corresponding results are presented in Fig. 5.3. We can observe that using

FCS, the error-appearances are limited to the static objects boundaries, while

regarding two out of the four frames, the PCH registration is highly erroneous.

We note that the Bayesian post processing, which will be proposed later in this

chapter, can remove the FCS errors, but it is unable to deal with the large PCH

gaps.

For the above mentioned reasons, we will use the FCS method for preliminary

registration in the following part of this chapter, however, in other test scenes it

can be replaced with PCH in a straightforward way.

Chapter4/Chapter4Figs/featureFullvDiss.eps
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Figure 5.5: Plot of the correlation values over the search window around two given
pixels. The upper pixel corresponds to a parallax error in the background, while the
lower pixel is part of a real object displacement.

5.3 Change Detection with 3D Approach

The desired output of the method is a dense change map, i.e. a label should be

assigned to each pixel s ∈ S from the binary label-set: Φ = {fg, bg}, correspond-

ing to the two classes: foreground (fg) and background (bg), where foreground

means object displacement.

To interpret the segmentation task, we must consider the problem in 3D (see Fig.

5.1a). We define the labeling in the following way:

Definition 9 (Foreground in case of moving camera) Pixel s belongs to

foreground (fg), if the 3D scene point P , which is projected to pixel s in the first

frame (G1), changes its position in the scene’s (3D) world coordinate system or is

covered by a moving object by the time taking the second image (G2). Otherwise,

pixel s belongs to the background (bg).

Chapter4/Chapter4Figs/corrDemo_ICIP.eps
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5.4 Feature Selection

In this section, we introduce the feature selection using an airborne photo pair.1

Taking a probabilistic approach, first we extract features, and then consider the

class labels to be random processes generating the features according to different

distributions.

The first feature is the gray level difference of the corresponding pixels in the

registered images:

od(s) = g̃2(s)− g1(s). (5.3)

Although due to the imperfect registration, g1(s) and g̃2(s) usually do not rep-

resent exactly the same scene point, we can use the spatial redundancy in the

images. Since the pixel levels in a homogenous surface are similar, the occur-

ring od(.) feature values in the background can be statistically characterized by a

random variable with a given mean value µ (i.e. global intensity offset between

the images) and deviation σ (uncertainty due to camera noise and registration

errors). We validate this feature through experiments (Fig. 5.4c): if we plot the

histogram of od(s) values corresponding to manually marked background points,

then we can observe that a Gaussian approximation is reasonable:

P (od(s)|bg) = N(od(s), µ, σ) =

=
1√
2πσ

exp

(
−(od(s)− µ)2

2σ2

)
. (5.4)

On the other hand, any od(s) value may occur in the foreground, hence the

foreground class is modeled by a uniform density:

P (od(s)|fg) =

{
1

bd−ad
, if od(s) ∈ [ad, bd]

0 otherwise.
(5.5)

Next, we demonstrate the limitations of this feature. After supervised estima-

tion of the distribution parameters, we derive the Ad image in Fig. 5.4d as the

maximum likelihood estimate: the label of s is

argmaxφ∈{fg,bg}P (od(s)|φ). (5.6)

1We have also observed similar tendencies regarding the other test images, provided
by the ALFA project.
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We can observe that several false positive foreground points are detected, how-

ever, these artifacts are mainly limited to textured ‘background’ areas and to the

surface boundaries. In these cases, the g1(s) and g̃2(s) values correspond to differ-

ent surfaces in the 3D scene, so od(s) may have an arbitrary value, which appears

as an outlier with respect to the previously defined Gaussian distribution.

For the above reasons, we introduce a second feature. Denote the rectangular

neighborhood of s, with a fixed window size, by Λ1(s) in G1, and by Λ2(s) in

G̃2. Assuming the presence of errors of a few pixels, if s is in the background,

we can usually find an ds = [dx, dy] offset vector, for which Λ1(s) and Λ2(s+ ds)

are strongly correlated. Here, we use the normalized cross correlation as simi-

larity measure: namely, correlation of two image parts A = {α1, α2, . . . αn} and

B = {γ1, γ2, . . . γn}, where (αi, γi) are the values of the corresponding pixels, α

and γ being the mean values in the images, is computed by:

Corr(A,B) =

∑n

i=1 (αi − α)(γi − γ)√∑n

i=1(αi − α)2
∑n

i=1(γi − γ)2
. (5.7)

In Fig 5.5, we plot the correlation values between Λ1(s) and Λ2(s + ds) for dif-

ferent values of the offset ds around two given pixels, which are marked with

the beginning of the arrows. The upper pixel corresponds to a parallax error in

the background, while the lower one is part of a real object displacement. The

correlation plot has high peak only in the upper case. We use oc(s), the maxima

in the local correlation function around pixel s as second feature:

oc(s) = max
(s+ds)∈Hs

Corr{Λ1(s),Λ2(s+ ds)}, (5.8)

where the search window of the offset ds, is equal to rectangle Hs defined in

Section 5.1.1.

By examining the histogram of oc(s) values in the background (Fig 5.4e), we find

that it can be approximated by a beta density function:

P (oc(s)|bg) = B (oc(s), β1, β2) , (5.9)

where

B(c, β1, β2) =

{
Γ(β1+β2)
Γ(β1)Γ(β2)

cβ1−1(1− c)β2−1, if c ∈ (0, 1)

0 otherwise
(5.10)
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Γ(α) =

∫ ∞

0

λα−1e−λdλ. (5.11)

As for the foreground class we will use a uniform probability P (oc(s)|fg) with ac

and bc parameters, similarly to eq. 5.5.

We see in Fig. 5.4f (Ac image) that the oc(.) descriptor alone also causes poor

result: similarly to the gray level difference, a lot of false alarms are present. How-

ever, the errors appear at different locations compared to the previous case. First

of all, due to the block matching, the spatial resolution of the segmented map de-

creases, and the blobs of object displacements became erroneously large. Secondly

in homogenous areas, the variance of the pixel values in the blocks to compare

may be very low, thus the normalized correlation coefficient will be highly sensi-

tive to noise. In summary, the od(.) and oc(.) features may cause quite a lot of

false positive foreground points, however the rate of false negative detection is low

in both cases: they appear only at location of background-colored object parts,

and they can be partially eliminated by spatial smoothing constraints discussed

later in this chapter. Moreover, examining the gray level difference, od(s), results

usually in a false positive decision if the neighborhood of s is textured, but in that

case the decision based on the correlation peak value, oc(s), is usually correct.

Similarly, if oc(s) votes erroneously, we can usually trust in the hint of od(s).

Consequently, if we consider Ad and Ac as a Boolean lattice, where ‘true’ corre-

sponds to the foreground label, the logical AND operation on Ad and Ac improves

the results significantly (Fig. 5.4h). We note that this classification is still quite

noisy, although in the segmented image, we expect connected regions representing

the motion silhouettes. Here again, Markov Random Fields (MRFs) will be used

to ensure the contextual classification. However, our case is particular: we have

two weak features, which present two different (poor) segmentations, while the

final foreground-background clustering depends directly on the labels of the weak

segmentations. To decrease noise, we must prescribe, that both the weak and

the final segmentations must be ‘smooth’. For the above reasons, we introduce a

novel segmentation model in Section 5.5.

Note that the limitation of the oc(.) descriptor is caused by the denominator
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term in the normalized correlation expression (eq. 5.7). Here, we offer as alter-

native descriptor a non-normalized similarity factor, namely, the simple squared

difference. For A = {α1, α2, . . . αn} and B = {γ1, γ2, . . . γn}:

Sqdiff(A,B) =
n∑

i=1

(αi − γi)2, (5.12)

and denote by o∗c(s) the minimal Sqdiff value around s, while A∗
c is the segmented

image based on o∗c(.). We show some comparative experimental results for features

Ac and A∗
c in Fig. 5.6. We can observe that in itself, A∗

c has significantly better

quality than Ac, but oc(.) is a better complementary feature of od(.), and the

Ad − Ac joint segmentation is better than the clustering based on Ad − A∗
c .

5.5 Multi-Layer Segmentation Model

In the proposed approach, we construct a Markov Random Field (MRF) model

on a graph G whose structure is shown in Fig. 5.7. In the previous section, we

segmented the images in two independent ways, and derived the final result by a

label fusion using the two segmentations. Therefore, we arrange the nodes of G

into three layers Sd, Sc and S∗, each layer has the same size as the image lattice

S. We assign to each pixel s ∈ S a unique node in each layer: e.g. sd is the

node corresponding to pixel s on the layer Sd. We denote sc ∈ Sc and s∗ ∈ S∗

similarly.

We introduce a labeling process, which assigns a label ω(.) to all nodes of G

from the label-set: Φ = {fg, bg}. The labeling of Sd/Sc corresponds to the

segmentation based on the od(.)/oc(.) feature, respectively; while the labels at

the S∗ layer present the final change mask. A global labeling of G is

ω =
{
ω(si)|s ∈ S, i ∈ {d, c, ∗}

}
. (5.13)

In the proposed model, the labeling of an arbitrary node depends directly on

the labels of its neighbors (MRF property). For this reason, we must define

the neighborhoods (i.e. the connections) in G (see Fig. 5.7). To ensure the

smoothness of the segmentations, we put connections within each layer between
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Figure 5.6: Qualitative comparison of the ‘sum of local squared differences’ (A∗
c) and

the ‘normalized cross correlation’ (Ac) similarity measures with our label fusion model.
In itself, the segmentation A∗

c is significantly better than Ac, but after fusion with Ad,
the normalized cross correlation outperforms the squared difference.

Chapter4/Chapter4Figs/corrAbsDiffCompAlligned.eps
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node pairs corresponding to neighboring pixels of the image lattice S.1 On the

other hand, the nodes at different layers corresponding to the same pixel must

interact in order to produce the fusion of the two different segmentations labels

in the S∗ layer. Hence, we introduce ‘inter-layer’ connections between nodes si

and sj: ∀s ∈ S; i, j ∈ {d, c, ∗}, i 6= j. Therefore, the graph has doubleton

‘intra-layer’ cliques (their set is C2) which contain pairs of nodes, and ‘inter-layer’

cliques (C3) consisting of node-triples. We also use singleton cliques (C1), which

are one-element sets containing the individual nodes: they will link the model

and the local observations. Hence, the set of cliques is C = C1 ∪ C2 ∪ C3.

Denote the observation process by

O =
{
o(si)| s ∈ S, i ∈ {d, c}

}
, (5.14)

where o(sd) = od(s), o(s
c) = oc(s), O = Sd ∪ Sc.

Our goal is to find the optimal labeling ω̂, which maximizes the a posterior

probability P (ω|O) that is a maximum a posteriori estimate (MAP) defined by

eq. 2.13:

ω̂ = argmaxω∈ΩP (ω|O). (5.15)

where Ω denotes the set of all the possible global labelings. Based on the

Hammersley-Clifford Theorem (theorem 1) the a posterior probability of a given

labeling follows a Gibbs distribution:

P (ω|O) =
1

Z
exp

(
−
∑

C∈C

VC(ωC)

)
, (5.16)

where VC is the clique potential of C ∈ C, which is ‘low’ if ωC (the label- sub-

configuration corresponding to C) is semantically correct, ‘high’, if not. Z is a

normalizing constant, which does not depend on ω.

In the following part of this section, we define the clique potentials. We refer to

a given clique as the set of its nodes (in fact, each clique is a subgraph of G), e.g.

we denote the doubleton clique containing nodes sd and rd with {sd, rd}.
The observations affect the model through the singleton potentials. As we stated

1We use first order neighborhoods in S, where each pixel has 4 neighbors.
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Figure 5.7: Summary of the proposed three layer MRF model

previously, the labels in the Sd and Sc layers are directly influenced by the od(.)

and oc(.) values, respectively, ∀s ∈ S:

V{sd}

(
ω(sd)

)
= − logP (od(s)|ω(sd)), (5.17)

V{sc} (ω(sc)) = − logP (oc(s)|ω(sc)), (5.18)

where the probabilities that the given foreground or background classes generate

the od(s) or oc(s) observation, were already defined in Section 5.4 by eq. 5.4, 5.5

and 5.9.

On the other hand, the labels at S∗ have no direct links with these measurements:

V{s∗} (ω(s∗)) = 0. (5.19)

In order to get a smooth segmentation in each layer, the potential of an intra-layer

clique C2 = {si, ri} ∈ C2, i ∈ {d, c, ∗} has the following form [42]:

VC2 = Θ
(
ω(si), ω(ri)

)
=

{
−δi if ω(si) = ω(ri)
+δi if ω(si) 6= ω(ri)

(5.20)

Chapter4/Chapter4Figs/3layerMRFmodelM2.eps
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with a constant δi > 0.

As we concluded from the experiments in Section 5.4, a pixel is likely generated

by the background process, if and only if in the Sd and Sc layers, at least one cor-

responding node has the label ‘bg’. We introduce the following indicator function:

Ibg : Sd ∪ Sc ∪ S∗ → {0, 1}, (5.21)

where

Ibg(q) =

{
1 if ω(q) = bg
0 if ω(q) 6= bg.

(5.22)

With this notation the potential of an inter-layer clique C3 = {sd, sc, s∗} is:

VC3(ωC3
) = ς(ω(sd), ω(sc), ω(s∗)) =

{
−% if Ibg(s

∗) = max
(
Ibg(s

d), Ibg(s
c)
)

+% otherwise.
(5.23)

with % > 0.

Therefore, the optimal MAP labeling ω̂, which maximizes P (ω̂|O) (hence mini-

mizes − logP (ω̂|O)) can be calculated as:

ω̂ = argmin
ω∈Ω

{
−
∑

s∈S

logP (od(s)|ω(sd))−
∑

s∈S

logP (oc(s)|ω(sc))

+
∑

C2∈C2

VC2

(
ωC2

)
+
∑

C3∈C3

VC3

(
ωC3

)}
. (5.24)

The above energy minimization is performed with simulated annealing. (See

Section 5.7 for details.) The final segmentation is taken as the labeling of the S∗

layer.

5.6 Parameter Settings

In the following we define a possible grouping of the free parameters in the process:

the first group is related to the correlation calculation and the second one to the

potential functions.
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5.6.1 Parameters Related to the Correlation Window

The correlation window defined in Section 5.4 should not be significantly larger

than the expected objects to ensure low correlation between an image part which

contains an object and one from the same ‘empty’ area. We use a 9 × 9 pixel

window in our experiments for images of size 320× 240.

The maximal offset of the search window determines maximal parallax error,

which can be compensated by the method. We note that in homogenous back-

ground, object motions with less than the offset parameter can be falsely detected

as parallax errors. Therefore, at the given resolution, we use ±3 pixels for the

maximal offset, and detect the moving objects whose displacement is larger.

5.6.2 Parameters of the Potential Functions

The singleton potentials are values of conditional density functions as it was de-

fined in Section 5.4 by eq. 5.4, 5.5 and 5.9.

The Gaussian mean parameter (µ) corresponds to the average gray value differ-

ence between the images caused by quick changes in the lighting conditions or

in the camera white balance, the deviation (σ) depends on the noise. These pa-

rameters can be estimated by creating a histogram for Ad difference image, and

estimating the parameters of the area close to the main peak of this histogram.

The Beta distribution parameters and the uniform values are determined from

one image to another one by trial and error. We use β1 = 4.5, β2 = 1 and

ac = 0, bc = 1 for all image pairs (with the assumption that the gray values of

the images are normalized between 0 and 1), while the optimal value of ad and

bd shows significant differences in the different image sets. Using the ‘2σ-rule’

proved to be a good initial approximation, namely 1
bd−ad

= N(µ+2σ, µ, σ). Here,

following the Chebyshev inequality [43]:

P (|od(s)− µ| > 2σ | ω(s) = bg) <
1

4
. (5.25)

The parameters of the intra-layer potential functions, δd, δc and δ∗ influence the

size of the connected blobs in the segmented images. Higher δi (i ∈ {d, c, ∗})
values result in more compact foreground regions, however, fine details of the

silhouettes may be distorted that way. We have used in each layer δi = 0.7 for
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Figure 5.8: Ordinal numbers of the nodes in a 5×5 layer according to the ‘checkerboard’
scanning strategy

test images with relatively small objects (e.g. ‘balloon1’ and ‘Budapest’ sets,

introduced in Section 5.9.1), while δi = 1.0 have been proved to be appropriate

regarding images captured from lower altitude (‘balloon2’).

Parameter % of the inter-layer potentials determines the strength of the relation-

ship between the segmentation of the different layers. We have used % = δ∗: this

choice gives the same importance to the intra-layer smoothness and the inter-layer

label fusion constraints.

5.7 MRF Optimization

We have used the Modified Metropolis (MMD) [53] algorithm in this chapter,

since we have found it is nearly as efficient but significantly quicker than the

original Metropolis [52] in this application. We give the detailed pseudo code of

the MMD adapted to the three layer segmentation model in Fig. 5.9. If we use

ICM with our model [54], its processing time is negligible compared to the other

parts of the algorithm, in exchange for some degradation in the segmentation

results.

Chapter4/Chapter4Figs/checkboard_scan.eps
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1. Pick up randomly an initial configuration ω, with k := 0 and T := T0.
2. Denote by |Q| the number of nodes in the three-layer model. Assign

to each node a unique ordinal number between 1 and |Q|, applying the
‘checkerboard’ scanning strategy (Fig. 5.8) for the consecutive layers.
Let j := 1.

3. Let q the jth node, i ∈ {d, c, ∗} is the layer which contains q, while s ∈ S
is the corresponding pixel in the image lattice: q = si.

4. Denote the label of q in ω by ω(q). Flip the label of q and denote it by
ω̆(q).

5. Compute ∆U as follows:

∆U := ∆U1 + ∆U2 + ∆U3, where

a. Calculate ∆U1 as:

∆U1 :=





logP (d(s)|ω(q))− logP (d(s)|ω̆(q)) if i = d,
logP (c(s)|ω(q))− logP (c(s)|ω̆(q)) if i = c,
0 if i = ∗

b. Using eq. 5.20, calculate ∆U2 as:

∆U2 :=
∑

r∈Φs

Θ
(
ω̆(si), ω(ri)

)
−Θ

(
ω(si), ω(ri)

)
.

c. Denote by ς0 = ς
(
ω(sd), ω(sc), ω(s∗)

)
(eq. 5.23). Calculate ∆U3 as:

∆U3 :=





ς (ω̆(q), ω(sc), ω(s∗))− ς0 if i = d,
ς
(
ω(sd), ω̆(q), ω(s∗)

)
− ς0 if i = c,

ς
(
ω(sd), ω(sc), ω̆(q)

)
− ς0 if i = ∗

9. Update the label of q:

ω(q) :=

{
ω̆(q) if log τ ≤ −∆U

T
,

ω(q) otherwise.

where τ is a constant threshold (τ ∈ (0, 1)).
10. If j < |Q|: {j := j + 1 and goto step 3.}
11. Set T := Tk+1, k := k + 1, j := 1 and goto step 3, until convergence (i.e.

the number of the changed labels between the kth and (k+1)th iteration
is lower than a threshold.)

Figure 5.9: Pseudo-code of the Modified Metropolis algorithm used for the current
task. Corresponding notations are given in Sections 5.2, 5.4, 5.5 and 5.7. In the tests,
we used τ = 0.3, T0 = 4, and an exponential heating strategy: Tk+1 = 0.96 · Tk
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Table 5.1: Processing time of the correlation calculator algorithm as a function of the
search window sizes, using 320 × 240 images, C++ implementation and a Pentium
desktop computer (Intel(R) Core(TM)2 CPU, 2GHz)

Window size (W ) 3× 3 5× 5 7× 7 9× 9 11× 11
Time (sec) 0.5 1.1 2.4 4.2 6.3

5.8 Implementation Issues

A key point from a practical point of view is using an effective algorithm to cal-

culate the correlation map used by the oc(.) feature (Section 5.4, eq. 5.7). The

proposed algorithm, introduced in [13] in details, uses box filtering technique

with the integral image trick [126] similarly to [127]. However, since our method

does not assume accurate epipolar matching, the region where we search for pixel

correspondences is a rectangle instead of a line, like in [127], which works with

epipolar rectified images [128]. On the other hand, exploiting that due to the

preliminary registration and the expected low parallax distortion the correspond-

ing pixels are relatively close to each other, we can also extend the box matching

technique to search in the moving window. Here, we need a 4D representation of

the local correlation map, instead of 3D [127].

5.8.1 Running Speed

We tested the implemented correlation calculating algorithm with different sized

search windows (Hs). Some results about the corresponding processing time are

in Table 5.1. In the tests of Section 5.9, we use 7 × 7 pixel search windows. If

larger window is necessary, we can speed up the method with multi-resolution

techniques [129].

With C++ implementation and a Pentium desktop computer (Intel(R) Core(TM)2

CPU, 2GHz), processing 320×240 images takes 5−6 seconds. For the main parts

of the algorithm, the measured processing times are shown in Table 5.2.
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Table 5.2: Running time of the main parts of the algorithm

Procedure FCS PCH Corr. map MRF opt.
Time (sec) 0.15 0.04 2.4 2.9

5.9 Results

In this section, we validate our method via image pairs from different test sets.

We compare the results of the three layer model with three reference methods

first qualitatively, then using different quantitative measures. Thereafter, we test

the significance of the inter-layer connections in the joint segmentation model.

Finally, we comment on the complexity of the algorithm.

5.9.1 Test Sets

The evaluations are conducted using manually generated ground truth masks re-

garding different aerial images. We use three test sets which contain 83 (=52+22+9)

image pairs. The time difference between the frames to compare is about 1.5-

2 seconds. The ‘balloon1’ and ‘balloon2’ test sets contain image pairs from a

video-sequence captured by a flying balloon, while in the set ‘Budapest’, we find

different image pairs taken from a plane. For each test set, the model param-

eters are estimated over 2-5 training pairs and we examine the quality of the

segmentation on the remaining test pairs.

5.9.2 Reference Methods and Qualitative Comparison

We have compared the results of the proposed three-layer model to three other

solutions. The first reference method (Layer1) is constructed from our model by

ignoring the segmentation and the second observation layers. This comparison

emphasizes the importance of using the correlation-peak features, since only the

gray level differences are used here. The second reference is the method of Farin

and With [117]. The third comparison is related to the limits of [109]: the opti-

mal affine transform between the frames (which was automatically estimated in

[109]) is determined in our comparative experiments in a supervised way, through
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manually marked matching points. Thereafter, we create the change map based

on the gray level difference of the registered images with using a similar spatial

smoothing energy term to eq. 5.20.

Fig. 5.10 shows the image pairs, ground truth and the segmented images with

the different methods. For numerical evaluation, we perform first a pixel based,

then an object based comparison.

5.9.3 Pixel Based Evaluation

For pixel based evaluation, we use the Rc, Pr and FM measures again, which

were introduced in Section 3.7.3. The results are presented in Table 5.3 for each

image-set independently.

Regarding the ‘balloon1’/‘balloon2’/‘Budapest’ test sets, the gain of using our

method considering the FM is 26/35/16% in contrast to the Layer1 segmenta-

tion and 12/19/13% compared to Farin’s method. The results of the frame global

affine matching, even with manually determined control points, is 5/10/11% worse

than what we get with the proposed model.

5.9.4 Object Based Evaluation

Although our method does not segment the individual objects, the presented

change mask can be the input of an object detector module. It is important

to know, how many object-motions are correctly detected, and what is the false

alarm rate.

If an object changes its location, two blobs appear in the binary motion image,

corresponding to its first and second positions. Of course, these blobs can over-

lap, or one of them may be missing, if an object just appears in the second frame,

or if it leaves the area of the image between the two shots. In the following, we

call one such blob an ‘object displacement’, which will be the unit in the object

based comparison.

Given a binary segmented image, denote by Mo (missing objects) the number

of object displacements, which are not included in the motion silhouettes, while
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Table 5.3: Numerical comparison of the proposed method (3-layer MRF) with the
results that we get without the correlation layer (Layer1) and Farin’s method [117] and
the supervised affine matching. Rows correspond to the three different test image-sets
with notation of their cardinality (e.g. number of image-pairs included in the sets).

Set Recall Precision
Name Cardi-

nality
Layer1 Farin’s Sup.

affine
3layer
MRF

Layer1 Farin’s Sup.
affine

3layer
MRF

balloon1 52 0.83 0.76 0.85 0.92 0.48 0.74 0.79 0.85
balloon2 22 0.86 0.68 0.89 0.88 0.35 0.64 0.65 0.83
Budapest 9 0.87 0.80 0.85 0.89 0.56 0.65 0.65 0.79

Table 5.4: Numerical comparison of the proposed and reference methods via the FM -
rate. Notations are the same as in Table 5.3.

Set FM
Name Cardi-

nality
Layer1 Farin’s Sup.

affine
3layer
MRF

balloon1 52 0.61 0.75 0.82 0.87
balloon2 22 0.50 0.66 0.75 0.85
Budapest 9 0.68 0.71 0.73 0.84

Fo (false objects) is the number of the connected blobs in the silhouette images,

which do not contain real object displacements, but their size is at least as large

as one expected object. For the selected image pairs of Fig. 5.10, the numerical

comparison to Farin’s and the supervised affine method is given in Table 5.3. A

limitation of our method can be observed in the ‘Budapest’ #2 image pair: the

parallax distortion of a standing lamp is higher than the length of the correla-

tion search window side, which results in two false objects in the motion mask.

However, the number of missing and false objects is much lower than with the

reference methods.
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Figure 5.10: Test image pairs and segmentation results with different methods.

Chapter4/Chapter4Figs/results3.eps
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Table 5.5: Object-based comparison of the proposed and the reference methods. Ao
means the number of all object displacements in the images, while the number of
missing and false objects is respectively Mo and Fo.

Test pair A0 Mo Fo
Set No. Far. Sup.

aff.
3lay.
MRF

Far. Sup.
aff.

3lay.
MRF

balloon1 #1 19 0 0 0 6 1 1
balloon2 #1 6 0 0 0 3 2 0
Budapest #1 6 1 0 0 7 7 0
Budapest #2 32 0 1 1 10 6 3

All 63 3 1 1 26 16 4

Figure 5.11: Illustration of the benefit of the inter-layer connections in the joint seg-
mentation. Col 1: ground truth, Col 2: results after separate MRF segmentation of
the Sd and Sc layers, and deriving the final result with a per pixel AND relationship.
Col 3. Result of the proposed joint segmentation model

Chapter4/Chapter4Figs/compSepSegmJointSegm.eps
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5.9.5 Significance of the Joint Segmentation Model

In the proposed model, the segmentations based on the od(.) and oc(.) features

are not performed independently: they interact through the inter-layer cliques.

Although similar approaches have been already used for different image segmen-

tation problems [45]-[48], the significance of intra-layer connections should be

justified with respect to the current task. Note, that increasing the number of

connections in the MRF results in a more complex energy model (eq. 5.24), which

increases the computational complexity of the method.

We demonstrate the role of the inter-layer cliques by comparing the proposed

scheme with a sequential model, where first, we perform two independent seg-

mentations based on od(.) and oc(.) (i.e. we segment the Sd and Sc layers ignoring

the inter-layer cliques), thereafter, we get the segmentation of S∗ by a per pixel

AND operation on the Ad and Ac segmented images. In Fig. 5.11, we can observe

that the separate segmentation gives noisy results, since in this case, the intra-

layer smoothing terms do not take into account in the S∗ layer. Consequently,

the proposed label fusion process enhances the quality of segmentation versus the

sequential model.

5.10 Conclusion of the Chapter

This chapter has addressed the problem of exploiting accurate change masks from

image pairs taken by a moving camera. A novel three-layer MRF model has been

proposed, which integrates the information from two different observations. The

efficiency of the method has been validated through real-world aerial images, and

its behavior versus three reference methods has been quantitatively and qualita-

tively evaluated.



Chapter 6

Markovian Framework for
Structural Change Detection
with Application on Detecting
Built-in Changes in Airborne
Images

In this chapter we address the problem of change detection in airborne im-

age pairs taken with significant time difference. In reconnaissance and explo-

ration tasks, finding the slowly changing areas through a long tract of time is

disturbed by the temporal parameter changes of the considered clusters. We

introduce a new joint segmentation model, containing two layers correspond-

ing to the same area of different far times and the detected change map. We

tested this co-segmentation model considering two clusters on the photos: built-

in and natural/cultivated areas. We propose a Bayesian segmentation framework

which exploits not only the noisy class-descriptors in the independent images, but

also creates links between the segmentation of the two pictures, ensuring to get

smooth connected regions in the segmented images, and also in the change mask.

The domain dependent part of the model is separated, therefore the proposed

structure can be used for significantly different descriptors and problems also.

105
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6.1 Introduction

Tasks of Chapters 3-5 compare images taken with at most a few seconds time dif-

ference, based on comparing the gray or color values of the corresponding pixels.

(In Chapter 5 we use a probabilistic interpretation for the pixel correspondency.)

It is more difficult to define changes in situations, where the images, which we

compare, were taken with significant time difference (several months or years).

Due to the illumination changes and altering shadow effects the appearance of

corresponding territories may be much different. In these cases, we have to care-

fully define what kind of differences we are looking for, while irrelevant changes

should be ignored.

Automatic evaluation of aerial photo repositories is an important field of research,

since periodically repeated manual processing is time-consuming and cumber-

some in cases of high number of images and dynamically changing content. Al-

though most of the corresponding state-of-the art models deal with multispectral

[130][131][132] or SAR [133][134] imagery, the significance of handling optical

photos is also increasing. In this chapter, we focus on built-in change detection

in graycale/RGB photos provided by the Hungarian Institute of Geodesy, Car-

tography and Remote Sensing (FÖMI).

One of the few previous methods which can be also applied for optical images, is

the PCA-based model [131]. Its main assumption is that the ‘unimportant’ color

differences are caused by alteration of illumination and camera settings. Since

these effects influence the observed sensor values in a multiplicative or additive

fashion, they modelled the relationship of the corresponding pixel levels within the

unchanged regions by a globally constant linear transform. Similar approaches

can be also found in [135]. However, experiments show that this technique is not

efficient enough regarding real images, because of strong noise effects.

In the following, we introduce a region based approach which is significantly dif-

ferent from the above pixel levels techniques. We show the applicability of the

proposed model using aerial images.
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6.2 Basic Goals and Notes

In the presented model we search for changes in image pairs from the same areas

with respect of given properties. In aspect of these properties, we segment the im-

ages using J pixel-clusters: (φ1, φ2, . . . φJ), and mark the connected image regions

whose clusters have changed. For example, in the demonstrating application, a

binary segmentation (J = 2) is achieved: built-in (φ1) and unpopulated natu-

ral/cultivated (φ2) areas are discriminated in airborne photos. The test-database

contains a huge number of preliminary registered images whose manual checking

would be cumbersome and time-consuming.

In the resulting segmented images and change-masks, we expect smooth con-

nected regions corresponding to the different clusters, which can be ensured via

MRFs. However, we must expect noisy cluster descriptors, which may alter by

time, moreover, the exact borders of the clusters in the images may be ambiguous,

similarly to the case of built-in and unpopulated areas. For this reason, if we ap-

ply two independent segmentation algorithms for the two images, the segmented

regions may have slightly different shapes and sizes, even if the image parts have

not changed in fact. Therefore, in this case, the result of simple local identity

checking on the segmented images is corrupted by several artifacts corresponding

to the different segmentations instead of real structural changes1. To solve this

problem, during the segmentation procedure of the first image we must consider

the second one and vice versa. Hence, we segment the images ‘together’ forcing

the corresponding regions to have the same segmentation-masks regarding the

two images.

In this chapter, we give a Bayesian approach on the above problem. Here, we

derived features describing the different class-memberships of a given image point

through a simple textural feature and we have developed a MRF model to per-

form the common segmentation. We emphasize that our model framework may

work together with more sophisticated features [136] and for significantly differ-

ent problems [e.g. trees, rivers]. However, the improved segmentation versus

earlier methods segmenting the images separately can be already observed with

1We show some corresponding experimental results in Section 6.6.
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this problem and feature selection. For simpler notation, we use only two clus-

ters (J = 2) in the following descriptions, since it is appropriate for the selected

problem, and the generalization for arbitrary number of segmentation-classes is

straightforward.

The sketch of our method is as follows: first, we map the change detection prob-

lem to the same 3-layer MRF structure, which was introduced in Chapter 5. We

assign a label to each node of the model, and a field energy corresponds to each

global labeling. Next, we find the optimal (or at least, a good suboptimal) global

labeling on the above model with respect of the previous energy term. Finally, we

map the resulting labeling back to the segmentation problem. The appropriate

construction of the field energy operator is responsible for getting appropriate

segmentation with respect of the above mentioned notes. The key point in our

model is that we assign three different nodes to each pixel having three differ-

ent labels. The first and second components indicates whether the given pixel

corresponds to the φ1 (built-in) or φ2 (unpopulated) cluster in the first and sec-

ond images, respectively. The third component gives the ‘changed’/‘unchanged’

result.

6.3 Image Model and Feature Extraction

Denote henceforward by G1 and G2 the two frames to compare above the same

pixel lattice S. Built-in areas usually contain several sharp edges near the borders

of houses and roads, while in the fields and forests the density of edges is lower.

In the experiments, we found the texture descriptor of Rosenfeld and Troy [137]

as a good indicator for discriminating these areas. Namely, if E(s) is the element

corresponding to pixel s in the binary (Prewitt) edge image of G, the edge density

descriptor χ is defined by:

χ(s) =
1

(2γ + 1)2

r∈S∑

||s−r||≤γ

E(r). (6.1)

Let χ1 and χ2 be the edge density images of G1 and G2, respectively.
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Figure 6.1: Feature extraction. Row 1: images (G1 and G2), Row 2: Prewitt edges
(E1 and E2), Row 3: edge density images (χ1 and chi2; dark pixel correspond to higher
edge densities)

Chapter5/Chapter5Figs/edgeFeature.eps
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6.4 MRF Segmentation Model

In the present task, the same 3-layer MRF model is used as introduced in Chapter

5, however the interpretation is different. In this case, two layers of the graph

G, S1 and S2, correspond to the built-in/unpopulated segmentations of the input

images G1 and G2 respectively, while the S∗ layer represents the final change

mask. In other words, the two observation-dependent layers are responsible to

segment two different images based on the same feature, while in Chapter 5

we segmented the same data at both layers (an image pair) based on different

features.

First, we define two label sets: Φb , {φ1, φ2} are used in the S1 and S2 layers,

while Φc , {+, -} are labels (changed, unchanged) for the S∗ layer:

ω :=

{
S1 ∪ S2 → Φb

S∗ → Φc
(6.2)

The global labeling has the following form:

ω =
{
[si, ω(si)] | s ∈ S, i ∈ {1, 2, ∗}

}
, (6.3)

where ω(s1) and ω(s2) labels define the φ1/φ2 segmentation classes of pixel s in

the first and second images, respectively1. Change label ω(s∗) indicates whether

there was built-in change (+), or not (-) at s pixel.

Note that this model is slightly different from the labeling procedure defined in

page 9, where at each node the same label set is used. A possible way to convert

this model to the abstract framework of Chapter 2, is that we use the united

Φb ∪Φc label set at each node, but to all global labelings negligible probability is

assigned, which use a label from Φb at layer S∗, or a label from Φc at layers S1

or S2. Since the practical result of both interpretations are the same, we will use

the simpler one defined by eq. 6.2.

The output of the change detector consists of the change labels of the different

pixels. However, we show in the following that during the optimizing procedure,

the segmentation labels also play important roles to get smooth and consistent

1As it was defined earlier that φ1 means ‘built-in’, φ2 indicates unpopulated regions.
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Figure 6.2: Left: Histogram (blue continuous line) of the occurring χ(.) values regarding
manually marked ‘unpopulated’ (φ2) pixels and the fitted Beta density function (with
red dashed line). Right: Histogram for ‘built-in’ (φ1) pixels and the fitted Gaussian
density.

solution.

We define the observation process by the following: O = S1 ∪ S2

O =
{
[si, o(si)] | s ∈ S, i ∈ {1, 2}

}
, (6.4)

where for all s ∈ S:

o(s1) = χ1(s) (6.5)

o(s2) = χ2(s) (6.6)

Again, based on the Hammersley-Clifford theorem, the probabilities of the differ-

ent global labelings follow a Gibbs distribution, and the optimal labeling ω̂ can

be determined as:

ω̂ = arg min
ω∈Ω

∑

C∈C

VC(ωC) (6.7)

We define singleton, doubleton and inter-layer cliques in the same way as in

Chapter 5. Finally, the potential functions should be given.

To make the outline of the model simpler, we visualized the structure in Fig.

6.6, where we gave examples how the different clique potentials can be calculated

considering the given labelings at two neighboring node-triples.

6.4.1 Singletons

The set of singleton cliques is defined by

C1 =
{
{si} | s ∈ S, i ∈ {1, 2, ∗}

}
. (6.8)

Chapter5/Chapter5Figs/histograms.eps
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The potential of the singleton cliques expresses that the ω(s1), ω(s2) labels should

be consistent with the χ1(s) and χ2(s) observation values:

V{si}

(
ω(si)

)
= − logP

(
o(si)|ω(si)

)
= − logP

(
χi(s)|ω(si)

)
i ∈ {1, 2} (6.9)

For example P (χ1(s)|ω(s1) = φ2) is the probability of the fact that the φ2 class

process generates the observation χ1(s) at pixel s.

Meanwhile the labels at the S∗ layers do not depend directly on the observations:

V{s∗}
(
ω(s∗)

)
≡ 0. (6.10)

Our next task is to define an appropriate probabilistic description of the oc-

curring observation values generated by the φ1/φ2 classes. First, we performed

experiments: regarding different image pairs, we plot the histograms of the oc-

curring χ1(s) and χ2(s) values corresponding to manually marked ‘built-in’ and

‘unpopulated’ region points in the input images. Fig. 6.2 contains the histograms

generated for the second image from Fig 6.1. We observed, that regarding the

distribution of the φ2-classed χ(s) values, a Beta density function, B(., β1, β2),

was an appropriate approximation, while the values in ‘built-in’ areas followed

Gaussian distribution N(., µ, σ). With these notations:

P (χ1(s)|ω(s1) = φ2) = B(χ1(s), β11, β12), (6.11)

P (χ2(s)|ω(s2) = φ2) = B(χ2(s), β21, β22), (6.12)

P (χ1(s)|ω(s1) = φ1) = N(χ1(s), µ1, σ1), (6.13)

P (χ2(s)|ω(s2) = φ1) = N(χ2(s), µ2, σ2). (6.14)

Here we note that the only application-dependent part of the segmentation model

is defining the above a posteriori probabilities. Other features and distributions

may be used for other problems.
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6.4.2 Doubleton (Intra-Layer) Cliques

Doubleton cliques are responsible for getting smooth connected regions of nodes

with the same label both during the built-in/unpopulated segmentation of the

inputs and also in the change mask. As in all cases in this dissertation, the

smoothness is ensured by forcing the neighboring nodes to have usually the same

labels, by the Potts energy term. Therefore, doubleton cliques are defined:

C2 =
{
{si, ri} | i ∈ {1, 2, ∗}; r ∈ Vs; r, s ∈ S

}
. (6.15)

The potential of an intra-layer clique C2 = {si, ri} ∈ C2, i ∈ {1, 2, ∗} has the

following form [42]:

VC2 = Θ
(
ω(si), ω(ri)

)
=

{
−δi if ω(si) = ω(ri)
+δi if ω(si) 6= ω(ri)

(6.16)

with a constant δi > 0.

6.4.3 Inter-Layer Cliques

Finally, we introduce the inter-layer cliques, which are responsible for forcing the

desired relationship between the corresponding segmentation and change labels.

Usually, the change label of a given pixel is ‘+’ (change), if and only if its seg-

mentation labels are different. However, we consider that noise or segmentation

artifacts may also cause erroneous different segmentation labels. Therefore, we

give only penalty if the label triple is not consistent, but do not exclude these

cases.

The set of inter-layer cliques, C3 has henceforward the following form:

C3 =
{
{s1, s2, s∗} | s ∈ S

}
. (6.17)

We introduce the following indicator function for i ∈ {1, 2, ∗} :

Ii : S → {0, 1}, (6.18)

where

Ii(s) =

{
1 if ω(si) ∈ {φ1,+}
0 if ω(si) ∈ {φ2,−}

(6.19)
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With this notation, for C3 = {s1, s2, s∗}:

VC3 = ς(ω(s1), ω(s2), ω(s∗)) =

{
−% if I∗(s) = I1(s)⊕ I2(s)
+% otherwise.

(6.20)

where ⊕ means modulo 2 addition.

6.5 Parameter Settings

The free parameters of the method can be classified into different groups. W

determines the size of the window, where the edge density texture is collected.

We used γ = 5 for images of size 320× 256.

6.5.1 Parameters of the Observation Dependent Term

We determined the ‘built-in’ class’ Gaussian parameters µ1, σ1, µ2, σ2 and the

unpopulated areas’ Beta parameters β11, β12, β21, β22 with supervision, using

manually marked training images.

6.5.2 Parameters of the Clique Regularization Terms

The parameters of the intra-layer clique potential functions, δ1, δ2 and δ∗ influence

the size of the connected blobs in the segmented images, while % relates to the

strength of the constraint between the segmentation labels and the ‘change label’

corresponding to a given node. We set these parameters to 1.

6.6 Results

We tested our method on registered airborne image pairs captured with 5-20 years

time differences. The primary goal of the test was the validation of the proposed

co-segmentation framework, not the appropriateness of the edge density feature

as built-in area detector. However, to demonstrate the difficulty of the problem,

we also compared our approach to the PCA-based model [131] introduced in the

beginning of this chapter. Therefore, we generated the results for comparison in

the following ways:

1. PCA-based: Implementation of the method [131].



6.6 Results 115

Figure 6.3: Comparison of the Recall, the Precision, and the FM rates regarding the
PCA-based approach [131], and the introduced region based model, using ‘separate
segmentation’ and the proposed ‘joint segmentation’ methods, respectively.

2. Joint segm: We jointly segmented the images and derived the change mask

by the proposed model.

3. Separate segm: We used a two-step process. First, we segmented the images

individually, and secondly, we used a simple xor operation to derive the

change mask. More precisely, in the proposed framework, we ignored the

ς(ω∗(s)) change mask regularization term (% = 0), otherwise we optimized

the MRF model with the same parameters as before. Finally, we set the

change term to fulfill

I∗(s) = I1(s)⊕ I2(s). (6.21)

The evaluations were done through manually generated ground truth masks. Seg-

mentation results with the three methods for three different image pairs are in

Fig. 6.5. The PCA-based method only gives reasonable performance regarding

the third image pair, while working with ‘separate segmentation’ presents several

false positive change-regions.

The results regarding the numerical evaluation are in the diagram of Fig. 6.3.

We can observe that for PCA, each evaluation metrics gives poor results. Al-

though the Recall rates with the separate and joint segmentation methods are

very similar, the Precision of the joint segmentation is significantly better, since

the proposed model is able to eliminate the slightly different segmentations’ ar-

tifacts.

Finally, we note that the proposed model presents also the ‘built-in’/‘unpopulated’

Chapter5/Chapter5Figs/diagramRes.eps
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The clique potentials concerning the selected nodes:
Singletons:
V{s1} = − logP

(
χ1(s)|ω(s1) = φ2

)
= − logB

(
χ1(s), β11, β12

)

V{r1} = − logP
(
χ1(r)|ω(r1) = φ2

)
= − logB

(
χ1(r), β11, β12

)

V{s2} = − logP
(
χ2(s)|ω(s2) = φ1

)
= − logN

(
χ2(s), µ2, σ2

)

V{r2} = − logP
(
χ2(r)|ω(r2) = φ2

)
= − logB

(
χ2(r), β21, β22

)

Doubletons: V{s1,r1} = −δ1, V{s∗,r∗} = −δ∗, V{s2,r2} = +δ2

Inter-layer potentials: V{s1,s2,s∗} = −%, V{r1,r2,r∗} = +%

Figure 6.4: Summary of the proposed model structure and examples how different
clique-potentials are defined there. Assumptions: r and s are two selected neighboring
pixels, while ω(r1) = ω(s1) = ω(r2) = φ2, ω(s2) = φ1 and ω(r∗) = ω(s∗) = +. In this
case, the clique potentials have the calculated values.

Chapter5/Chapter5Figs/MRFmodel.eps
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Figure 6.5: Validation. Rows 1 and 2: inputs (with the year of the photos), Row
3. Detected changes with the PCA-based method [131] Row 4. Change-result with
‘separate segmentation’. Row 5. Change-result with the proposed ‘joint segmentation’
model, Row 5: Ground truth for built-in change detection.

Chapter5/Chapter5Figs/resultsSil.eps
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Figure 6.6: Illustration of the segmentation results after optimization of the proposed
MRF model. Left and middle: marking built-in areas in the first and second input
images, respectively. Right: marking the built-in changes in the second photo.

segmentation of the input images by considering the ω(s1) and ω(s2) labels, re-

spectively (Fig. 6.6).

6.7 Conclusion of the Chapter

In this chapter, we addressed the problem of change detection in image pairs

taken with significant time difference. We introduced a general co-segmentation

model and illustrated its advantages versus segmenting the images separately via

a selected application: detecting built-in area changes in airborne photos.

Chapter5/Chapter5Figs/segmentation.EPS


Chapter 7

Conclusions of the thesis

This thesis has been dealing with three different change detection problems which

still raise important challenges to experts in computer vision. Markov Random

Fields have been chosen as framework for the surveys and improvements versus

previous approaches have been proposed both in class modeling and in building

different model structures. It has been shown that with appropriate feature selec-

tion and an efficient probabilistic description of the segmentation classes (such as

foreground, background and shadow), the performance of processing real scenes

can be significantly enhanced. As being shown by an example, we cannot always

jointly extract temporal and spatial features for all the considered processes, how-

ever, in the same coherent model temporal and spatial descriptions of the different

classes can be integrated. On the other hand, we have shown that in some cases

of change detection composite multi dimensional probability distributions may

hardly describe the desired feature interaction, but instead of this, simple struc-

tural innovations can also express complex probabilistic contexts.

The proposed models have been validated in real data sets, comparison to the

state-of-the-art has been given. Mathematical descriptions of the methods have

followed Bayesian approaches, and practical improvements versus previous mod-

els for the same problems have been demonstrated.
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Summary

7.1 Methods Used in the Experiments

In the course of my work, theorems and assertions from the field

of mathematical statistics, probability theory, optimization and re-

ported results of image and video processing were explored.The pro-

posed models are different implementations of Markov Random Fields

(MRF, [32]). The output is a segmented image (e.g. a change mask),

which is obtained by a global energy optimization:

arg max
ω

P (ω|O) = arg min
ω

(
− logP (O|ω) +

∑

C∈C

VC(ω)

)
, (7.1)

where O denotes observed image features, ω is a possible segmen-

tation, C is the set of cliques, i.e. pixel groups containing pairwise

neighboring nodes, P is probability, and VC denotes a clique potential

function. Markovian property means here that only the neighboring

nodes interact directly.

The test environment for task 1 is the PPKEyes which is a digital

video surveillance system developed at the Pázmány Péter Catholic

University (PPCU) which is operating in the university campus. Eval-

uation of the proposed algorithms has also been performed on publicly

available video databases. The aerial images used in the test regard-

ing task 2 and task 3 were provided by the ALFA project, the photos

were partially bought from the Hungarian Institute of Geodesy, Car-

tography and Remote Sensing (FÖMI).
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For the design and testing of algorithms I have used Matlab and Vi-

sual Studio .Net environments. Implementing image processing rou-

tines in C/C++have been highly facilitated by the OpenCV software

toolbox [125] provided by Intel. This thesis and the corresponding

publications of the author have been prepared in LATEX.

7.2 New Scientific Results

1. Thesis: I have worked out a novel spatio-temporal proba-
bilistic model based on MRF for foreground - background
separation and cast shadow detection in video frames. I
have experimentally shown that the proposed method out-
performs the recently published models with the same goals
and scene assumptions.

Published in [1][2][4][5][16]

Co-author publications from the writer of this thesis, where the pro-

posed model has been applied: [8][9][10][11][12]

The introduced model aims to efficiently separate foreground, back-

ground and cast shadows in videos provided by real surveillance ap-

plications. The method assumes that the sequences have been cap-

tured by static cameras, however, they may have low quality and

low/uncertain frame rate. The model considers camera noise, tempo-

ral changes in illumination and presence of reflecting scene surfaces

with inhomogeneous albedo and geometry. The energy term defined

by eq. 7.1 has the following form:

∑

s∈S

− logP (o(s)|ω(s)) +
∑

{r,s}∈C

Θ(ω(s), ω(r)), (7.2)

where o(s) is the feature value measured at pixel s, while ω(s) de-

notes the label of s indicating its segmentation class: foreground,

background or shadow. P (o(s)|ω(s)) is the probability that o(s) is
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generated by the class featured by ω(s). The proposed model focuses

on efficient feature extraction, and appropriate probabilistic modeling

of the different classes. The Θ(., .) term is responsible for the spatial

smoothness of the segmentation, penalizing neighboring node pairs

with different labels.

1.1. I have proposed a novel statistical and adaptive color model
for detecting cast shadows. I have shown that the procedure is more
efficient than using previous approaches if the scene reflection prop-
erties are not ideally Lambertian.

The most significant drawback of previously published shadow mod-

els is that their validity is limited to very specific environments, e.g.

they expect presence of purely Lambertian reflecting surfaces. The

performance of these methods notably decreases in lack of satisfying

the scene assumptions.

I have introduced a novel parametric shadow model. My method can

be used under variant illumination conditions, and it stochastically

models the differences of real scenes from an ideal Lambertian envi-

ronment. Local feature vectors are derived at the individual pixels,

and the shadow’s domain is represented by a global probability density

function in that feature space. The parameter adaption algorithm is

based on following the changes in the shadow’s feature domain. Test

results confirm that in real scenes the number of correctly detected

shadowed pixels is significantly higher than using the purely Lamber-

tian model.

1.2. A novel foreground description has been given based on spa-
tial statistics of the nearby pixel values. I have shown that the in-
troduced approach enhances the detection of background or shadow-
colored object parts, even in low and/or unsteady frame rate videos.

Most of the previous methods identified foreground areas purely by

recognizing the image regions which match neither to the background

nor to the shadow models.That approach may result in erroneous clas-

sification of background/shadow colored object parts. In some other
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cases frame rate sensitive features have been used which may not be

available in several real applications.

I have proposed a novel multi-modal color model for foreground. My

method exploits spatial color statistics instead of high frame rate tem-

poral information to describe the regions of moving objects. Using the

assumption that any object consists of spatially connected parts which

have typical color/texture patterns, the distribution of the likely fore-

ground colors have been locally estimated in each pixel neighborhood.

Based on the test, several objects’ parts were correctly detected in this

way, which were erroneously ignored by models using a uniform fore-

ground color distribution.

1.3. I have given a probabilistic model of the microstructural re-
sponses in the background and in the shadow. Thereafter, I have
completed the MRF segmentation model with microstructure analy-
sis. The proposed adaptive kernel selection strategy considers the lo-
cal background properties. I have shown via synthetic and real-world
examples, that the improved framework outperforms the purely color
based model, and methods using a single kernel.

Although integration of simple color and texture features are widely

used in image segmentation, textural components only have favou-

rable contribution to the results if the local texture of the scene or

the objects matches the selected features. Usually in a real world en-

vironment, we cannot find one proper textural feature for the whole

scene. On the other hand, an irrelevant descriptor may increase the

noise instead of enhancing the quality of segmentation.

I have developed a probabilistic description of microstructural re-

sponses observed in the background and in shadows. The features

can be defined by arbitrary 3× 3 kernels. At different pixel positions

different kernels can be used, and an adaptive kernel selection strat-

egy is proposed considering the local textural properties of the back-

ground regions. I have shown that the improved shadow model can

also collaborate with the microstructural descriptors, and the distribu-

tion parameters can be analytically estimated. I have experimentally
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shown that the proposed solution outperforms both the purely color

based segmentation model, and the single kernel based color-texture

fusion technique.

1.4. I have experimentally shown that among the widespread
color spaces, the CIE L*u*v* model is the best for cast shadow detec-
tion, both using an elliptical separation in the space of the introduced
pixel-level descriptors and regarding a color space independent exten-
sion of the proposed MRF-segmentation model.

Finding the most appropriate color space for cast shadow detection

is still an open question. I have shown that color space selection is a

key issue in shadow detection, if for practical purposes, shadow mod-

els with less free parameters are preferred.

I have developed a foreground/shadow pixel by pixel classifier which

can work with different color spaces. Since at pixel-level, the statistics

of the expected foreground colors is hard to estimate, I described the

shadow domain in the feature space following a one-class-classification

approach with elliptical border surface. I have supported the general

relevancy of the proposed schema by an extensive study. Using this

model, I have performed a detailed experimental comparison of seven

widely used color systems. A color space independent extension of

the proposed MRF-segmentation model has also been given with cor-

responding comparative experiments. Both evaluations showed the

clear superiority of the CIE L*u*v* color space.

Since the first experiment series did not exploit any accessory infor-

mation beyond the pixel by pixel shadow descriptors, the obtained

results are more objective and general regarding the direct effects of

color space selection. On the other hand, the comparison using the

composite Markovian model – which also integrates neighborhood

connection, spatial color statistics and texture information – shows

that the advantage of using the appropriate color space can be also

measured directly in the applications.

2. Thesis: I have developed novel three layer MRF models
for object motion detection in unregistered aerial image pairs
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and built-in change detection in aerial photos captured with
several years time difference. I have experimentally validated
the proposed models.

Published in [3][6][13]

2.1. I have developed a novel statistical model for object motion
detection in image pairs captured by moving airborne vehicles. I
have experimentally shown that the proposed approach outperforms
previous models which use purely linear image registration techniques
or local parallax removal.

This model deals with object motion detection in aerial image pairs

taken from a moving platform. We assume that the photos contain

‘dense’ parallax, but after projective registration, the resulting lo-

cal distortion has a bounded magnitude. For the above case, I have

shown that gray level differencing (d) and local block correlation with

a moving window (c) provide efficient complementary features to re-

move registration errors from the motion mask. Thereafter, I have

developed a novel three layer MRF model structure for this change

detection task. The segmentations of the first and third layers are

based on the two different features, while the second layer represents

the final change mask without direct links to the observations. Intra-

layer connections ensure smoothness of the segmentation within each

layer, while inter-layer links provide semantically correct labeling in

the middle (second) layer. The Markovian energy term (eq. 7.1 ) is

calculated as follows:

∑

s

− logP d
s +

∑

s

− logP c
s +

∑

i,{r,s}

Θ(ω(ri), ω(si)) +
∑

s

ςs,

where P d
s and P c

s characterize the consistency of the extracted fea-

tures and the corresponding segmentation labels, similarly to eq. 7.2.

The Θ(., .) function ensures smoothed segmentation within each layer

(indexed by i). The value of ςs is ±ρ, depending whether the labels

assigned to pixel s in the three layers agree with the prescribed label

fusion rules or not.
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Validation shows the superiority of the proposed model versus previ-

ous approaches for the same problem.

2.2. I have developed a Markovian framework for structural change
detection in aerial photos captured with significant time difference. I
have shown through an application on built-in change detection that
connecting the segmentations of the different images via pixel-level
links results in an efficient region based change detection method,
which is robust against the noise and incompleteness of the class de-
scriptors.

I have proposed a MRF framework for structural change detection

based on the three layer model introduced in Thesis 2.1. In this case,

two layers correspond to photos from the same area taken with large

time differences and one for the detected change map. I tested this co-

segmentation model considering two clusters on the photos: built-in

and natural/cultivated areas. The proposed Bayesian segmentation

framework exploits not only the extracted noisy class-descriptors, but

also creates links between the segmentations of the two images, ensur-

ing to get smooth connected regions in the change mask. I have shown

that this joint segmentation model enhances the detection of changes

versus the conventional composition of two independent single-layer

MRF processes.

7.3 Examples for Application

All the developed algorithms can be used as preprocessing steps of

high level computer vision applications, especially in video surveil-

lance, traffic monitoring and aerial exploitation.

The proposed methods directly correspond to ongoing research pro-

jects with the participation of the Pázmány Péter Catholic University

or the MTA-SZTAKI. Particularly, the Shape Modeling E-Team of the

EU Project MUSCLE is interested in learning and recognizing shapes

as a central part of image database indexing strategies. Its scope

includes shape analysis and learning, prior-based segmentation and
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shape-based retrieval. In shape modeling, however, accurate silhou-

ette extraction is a crucial preprocessing task.

The primary aim of the Hungarian R&D Project ALFA (NKFP 2/046

/04 project funded by NKTH) is to create a compact vision system

that may be used as autonomous visual recognition and navigation

system of unmanned aerial vehicles. In order to make long term nav-

igational decisions, the system has to evaluate the captured visual

information without any external assistance. The civil use of the sys-

tem includes large area security surveillance and traffic monitoring,

since effective and economic solution to these problems is not possible

using current technologies. The Hungarian GVOP (3.1.1.-2004-05-

0388/3.0) tackles the problem of semantic interpretation, categorizing

and indexing the video frames automatically. For all these applica-

tions, object motion detection provides significant information.





Appendix A

Some Relevant Issues of
Probability Calculus

This appendix summarizes some basic concepts and theorems of probability cal-

culus, which are used in the thesis. We will refer to elementary definitions of

probability theory, such as random variables, probability density functions or

Bayes decision, for which a detailed introduction can be found in [44] or [43].

A.1 MAP and ML Decision Strategies

Let be X1, X2, . . ., Xn random variables representing the outcomes of different

hidden stochastic processes. Let be o an observation value (measurement), which

is generated by one of the processes. The task is to find the ‘source process’ of o.

Following the Bayesian decision strategy, the optimal class is the maximum a

posteriori (MAP) estimate, which is defined by:

iMAP = arg max
i=1...n

P (i| o). (A.1)

On the other hand, the maximum likelihood (ML) estimate can be determined

by:

iML = arg max
i
P (o| i) = arg max

i
P (Xi = o). (A.2)

P (o| i) and P (i) are called a posteriori and a priori probabilities, respectively.

Using the Bayes theorem:

P (i| o) =
P (o| i) · P (i)

P (o)
. (A.3)
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Since P (o) is independent of i:

iMAP = arg max
i
P (o| i) · P (i). (A.4)

Consequently, the outcomes of the MAP and ML decisions are equivalent if P (i) =
1
n

for all i = 1, . . . , n.

A.2 Particular Probability Distributions

Real-world stochastic processes are often modeled by elementary probability den-

sity functions (pdf ). In this thesis uniform, normal (or Gaussian), Beta distri-

butions and finite mixtures are used, which will be introduced in the following.

Henceforward, fX(.) denotes the pdf of random variable X.

A.2.1 Uniform Distribution

The pdf of a uniform variable XU with parameters (a, b), where b > a, has the

following form:

fXU
(o, a, b) =

{
1
a−b

, if o ∈ (a, b)

0 otherwise
(A.5)

Modeling a process with uniform density usually results in a weak probabilistic

description, since all the occurring observation values in a given domain are gen-

erated with the same probability, which may give less information for a MAP

or ML classifier. Taking a binary clustering, a uniform process has simply a

‘threshold’-like role: between a uniform pdf fXU
(.) and an arbitrary pdf fX(.),

ML decision over the (a, b) domain is equivalent with thresholding fX(.) by 1
b−a

(see Section 5.4).

A.2.2 Normal Distribution

Normal (or Gaussian) distributions are very widespread in signal processing, since

they can efficiently model noise and inaccuracies in the measurements. XN is

normal variable if

fXN
(o, µ, σ) =

1√
2πσ

e−
(o−µ)2

σ2 . (A.6)
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Figure A.1: Probability density function of a) a single Gaussian, b) a mixture of two
Gaussians and c) a two dimensional multivariate Gaussian random variable

In this case, we use the notation

XN ∼ N [µ, σ2]. (A.7)

The Gaussian pdf has a typical bell shape as it can be seen in Fig A.1a. To

enhance its usability, multimodal (mixture) and multivariate extensions of normal

distribution are widely used as well.

A.2.3 Mixtures

Let be X1, X2, . . ., XK random variables, and κ1, κ2, . . ., κn positive constants

for which
∑K

k=1 κk = 1 holds. Random variable X is a mixture, if

fX(o) =

K∑

k=1

κk · fXk
(o). (A.8)

If X1, X2, . . ., XK are normal variables X is called mixture of Gaussians (see Fig

A.1b for a K = 2 case).

A.2.4 n-Dimensional Multivariate Normal Distribution

Let x = [x1, . . . , xn]
T , µ = [µ1, . . . , µn]

T and Σ an n× n positive definite matrix.

X is a multi variate normal variable, if its pdf is as follows:

fX(x1, . . . , xn) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)Σ−1(x− µ)T

)
(A.9)

A two dimensional (n = 2) Gaussian pdf is shown in Fig A.1c.

Appendix1/Appendix1Figs/gaussDemos.eps
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A.2.5 Multivariate Normal Distribution with Uncorrelated
Components

An important special case of multivariate normal distributions is if the covariance

matrix is diagonal:

Σ =




σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

n


 (A.10)

here, substituting formula (A.10) to (A.9) results in:

fX(x1, . . . , xn) = exp

{
−n

2
log 2π −

n∑

i=1

log σi −
1

2

(
xi − µi
σi

)2
}

(A.11)

The following theorem is used in Chapter 4.

Theorem 2 Let X be a 3 dimensional multivariate normal variable with uncor-
related components. The equipotential surfaces of the fX(.) density function are
ellipsoids, having parallel axes with the x, y, z coordinate axes.

Proof: the equation of a standard ellipsoid body in an x-y-z Cartesian coordinate

system has the following form for o = [o1, o2, o3] ∈ R
3:

2∑

i=0

(
o− ai
bi

)2

= 1, (A.12)

where [a0, a1, a2] is the coordinate of the ellipsoid center and (b0, b1, b2) are the

semi-axis lengths.

For a given z, the set of o can be expressed, where fX(o) = z

fX(o) = exp

{
−3

2
log 2π −

3∑

i=1

log σi −
1

2

(
oi − µi
σi

)2
}

= f0 (A.13)

With realigning this equation:

3

2
log 2π +

2∑

i=1

log σi +
1

2

(
oi − µi
σi

)2

= − log f0 (A.14)

3∑

i=1

(
oi − µi
σi

)2

= 2

(
− log f0 −

3

2
log 2π −

3∑

i=1

log σi

)
(A.15)
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Figure A.2: Shapes of a Beta density function in cases of three different parameter
settings

Eq. A.15 is equivalent to eq. A.12, if µi = ai, σi = bi for i = 0, 1, 2, and

2

(
− log f0 −

3

2
log 2π −

3∑

i=1

log bi

)
= 1 (A.16)

Expressing f0:

f0 =
e−

1
2

(2π)
3
2 · b1b2b3

(A.17)

A.2.6 Beta Distribution

The Gaussian density function is symmetric about its mean value, while it has

a typical bell shape which is not favourable for some occurring processes. An

alternative model is using a Beta random variable, whose pdf is defined as follows:

fXb
(o, β1, β2) =

{
Γ(β1+β2)
Γ(β1)Γ(β2)

oβ1−1(1− o)β2−1, if o ∈ (0, 1)

0 otherwise
(A.18)

where the Γ(.) function is defined by:

Γ(β) =

∫ ∞

0

λβ−1e−λdλ. (A.19)

As Fig. A.2 shows, depending on β1 and β2, fXb
(.) may have various shapes. Note

that with β1 = 1 and β2 = 1, the Beta distribution is equivalent to a uniform

density.

Appendix1/Appendix1Figs/betaDemos.eps
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A.3 Estimation of the Distribution Parameters

Let us model a stochastic process X by a given density function (e.g. uniform

or mixture of two Gaussians etc.) with a set of parameters θ. Let be o1, o2, . . .,

on observations generated by X, where ot corresponds to time t. Using a ML

estimation strategy, the goal is to find the optimal θML parameters defined by:

θML = arg max
θ
P (o1, . . . , on| θ) (A.20)

A standard tool for ML parameter estimation is the Expectation Maximization

algorithm (EM). However, using EM is practically inefficient in some cases. The

ML estimate of the Gaussian parameters for given samples can be obtained

by simply getting the empirical mean and variance values: µML = 1
n

∑n

i=1 oi,

σ2
ML = 1

n

∑n

i=1(oi − µML)2.

On the other hand, EM is an offline algorithm: at time t the input of the pa-

rameter estimation process is the whole [o1, o2, . . ., ot] observation vector. This

approach is computationally expensive and the storage of the past oi measure-

ments is needed.

Online estimators calculate the parameters for time t + 1, θt+1, using only the

observation and parameters at t: ot and θt. The empirical mean and variance

values can be easily determined in an online way based on the following theorem,

which is a straightforward consequence of the previous definitions of µML and

σ2
ML:

Theorem 3 If {oi|i = 1 . . . t} is a set of real numbers, St =
∑t

i=1 oi, Qt =∑t

i=1 (oi)
2, the empirical mean and variance values are in the following form:

µML[t+ 1] =
St
t

σ2
ML[t+ 1] =

Qt

t
−
(
St
t

)2

. (A.21)

St and Qt can be online updated by St+1 = St + ot+1, Qt+1 = Qt + (ot+1)
2

An online parameter estimator for a mixture of Gaussians distribution is given

by [62]. Their proposed on-line k-means algorithm is introduced in Section 3.3.2

in details. Note that online k-means does not guarantee to find the ML estimate,

but it is efficient for some practical problems like background modeling.
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A.4 Transformation of Random Variables

The following theorems about random variable transformations are used in Chap-

ter 3.

Theorem 4 If X1, . . . , Xn are random variables with mean values µ1, . . . , µn,
and finite variances σ2

1, . . . , σ
2
n, and Y = X1 + . . .+Xn, with µY expected value

and σ2
Y variance, while finite correlation factor, ρj,k exists for j, k ∈ {1, . . . , n},

then

µY =

n∑

i=1

µi, σ2
Y =

n∑

i=1

σ2
i + 2

∑

j<k

σjσk · ρj,k (A.22)

Proof: Consequence of the theorem about the sum of random variables in [43, p.

216], with notation of Cov{Xj, Xk} for the covariance of Xj and Xk, substituting

ρj,k =
Cov{Xj ,Xk}

σj ·σk
.

Theorem 5 (Linear transform of a normal variable) If there are given
a 6= 0 and b scalars, and X ∼ N [µ, σ2] normal variable, then Y = aX + b is also
a normal variable:

Y ∼ N [aµ + b, a2σ2]. (A.23)

Proof: Based on the assumption that X is Gaussian,

P (X < x) =
1√
2πσ

∫ x

−∞

e−
(t−µ)2

σ2 dt. (A.24)

Assume that a > 0. In this case, the distribution function of Y has the following

form:

P (Y < y) = P (aX+b < y) = P

(
X <

y − b
a

)
=

1√
2πσ

∫ y−b
a

−∞

e−
(t−µ)2

σ2 dt (A.25)

substituting λ = at+ b, and dt
dλ

= 1
a

implies:

P (Y < y) =
1√
2πσ

∫ y

−∞

1

a
e−

(λ−b
a −µ)

2

σ2 dλ =
1√

2πaσ

∫ y

−∞

e−

(
λ−(aµ+b)

)2

a2σ2 dλ (A.26)

which means that Y ∼ N [aµ+ b, a2σ2]. Case of a < 0 can be handled in a similar

manner.





Appendix B

Summary of Abbreviations and
Notations

Abbreviation Concept
MRF Markov Random Field
MAP Maximum a posteriori
ML maximum likelihood
SA Simulated Annealing (optimization method)
pdf probability density function
ICM Iterated Conditional Modes (MRF optimization technique)
MD Metropolis Dynamic (SA relaxation technique)
MMD Modified Metropolis Dynamic (SA relaxation technique)
CR content ratio (shadow model)
II Illumination invariant (shadow model)
TP , TN true positive, true negative (evaluation parameters)
FP , FN false positive, false negative
e.g. for example (in latin: ‘exempli gratia’)
i.a. inter alia
‘P+P’ plane+parallax (approach on image registration)

Variable Definition
j imaginary unit
i, k, m arbitrary index (number or enumeration)
n dimension parameter, index
G(Q,E) MRF graph with set of nodes Q and edges E.
q abstract node of a graph G, q ∈ Q (without emphasizing which

is the corresponding pixel in the input image)
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Variable Definition
ε edge of a graph ε ∈ E
S pixel lattice
s, r pixel (s, r ∈ S), or its corresponding node in G, in case of a

single layer MRF model
si node at the i layer, which corresponds to pixel s ∈ S (in case

of multi-layer MRF models)
Φ label set (#Φ = J)
φ, φi abstract label or class identifier
bg, fg, sh labels used in foreground/object motion detection (‘sh’ only

in Chapters 3, 4
+, - labels used in structural change detection
V neighborhood system of G

Vq neighborhood of node q in G (Vq ∈ V)
ω(q) label of node q in G (ω(q) ∈ Φ).
ω global labeling: {[q, ω(q)]|q ∈ Q}
Ω set of all the possible global labelings (ω ∈ Ω)
ωY label subconfiguration corresponding to set Y ⊆ Q (ωY ⊆ ω)
o(s), o(s) observation vector (∈ R

n) at pixel s (or at node s in single-
layer case)

o(q), o(q) observation vector (∈ R
n) assigned to node q ∈ Q

oi(q)
(
oi(s)

)
ith component of vector o(q) (o(s))

O global observation on G: {o(q) | q ∈ Q}
C clique of G

C set of cliques in G

VC potential of clique C
V{q1,...,qn} potential of a clique containing nodes q1, . . . , qn
L, u, v color components in the CIE L*u*v* space
χ texture/microstructural feature, or feature component index

ψ, ψi shadow descriptor vector and its ith component
Θ(ω1, ω2) Potts smoothing term
δ, δi parameter of the smoothing term (in the ith layer)
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Variable Definition
ς(.) inter-layer potential function
% parameter of the inter-layer potential term
λ wavelength or other integrand variable
G(← S) , Gi image (over S lattice), the ith image
g(s), gi(s) gray value/image sensor value at pixel s (in the ith image)
ν(λ) sensor sensitivity at wavelength λ
e(λ, s) illumination function
er local error vector of 2D registration at pixel r
Ei ith camera center
ρ(λ, s) descriptor of surface albedo-geometry
N(µ, σ) normal distribution with mean value µ and standard deviation

σ

N(µ,Σ) n dimensional normal distribution with mean value vector µ

and covariance matrix Σ
N(µ, σ) n dimensional normal distribution with diagonal covariance

matrix, where σ vector denotes the root of the diagonal ele-
ments.

f(x) arbitrary probability density function (pdf)
η(x, µ, σ) Gaussian (normal) pdf with parameters µ, σ.
B(x, β1, β2) beta pdf with parameters β1, β2.
pφ(s) pdf value corresponding to pixel s and class φ.
εφ(s) − log pφ(s).
ϑ(x) residual pdf term in the foreground model
h histogram
Hs A given rectangular neighborhood of pixel s (different roles in

Chapters 3 and 5).
κ(s), κi(s) weight (of the ith term) in a mixture pdf corresponding to

pixel s
od(s) gray level difference feature
oc(s) correlation peak value feature
ξ, ξj, ξt control parameter of learning speed in background/shadow

modeling
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Variable Definition

t, .[t] time (upper) index (for any quantities)
T transpose
T temperature (for simulated annealing)
T time constant (e.g. period of parameter update)
T transform
τ foreground threshold parameter (Gaussian term)
ζ foreground threshold parameter (preliminary filtering)
D matching operator for a Gaussian component
R correlation map
F 2D Fourier transform
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[57] L. Havasi, Z. Szlávik, and T. Szirányi, “Detection of gait characteristics

for scene registration in video surveillance system,” IEEE Trans. Image

Processing, vol. 16, no. 2, pp. 503–510, 2007. 3.1
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