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ABSTRACT 

 
In the paper we show that by using co-motion statistics random 
motion can be used for the registration of views and calibration 
of cameras. The introduced algorithm finds point 
correspondences in two views without searching for any 
structures and without the need for tracking continuous motion.  
 

1. INTRODUCTION 
 
Calibration of cameras and registration of different views is a 
basic task for many applications, such as: stereovision, 3-
dimensional reconstruction, tracking across multiple views [6] 
[8][9]. 
Usually an algorithm for the alignment of different views and 
calibration of cameras has the following steps: 

1. Feature detection; 
2. Extraction of candidate point-pairs; 
3. Rejection of outliers and estimation of the model that 

does the alignment; 
4. Alignment of different views; 
5. Estimation of epipolar geometry. 

In the paper we will present an algorithm for the first four steps 
of the above general schema. Having the point correspondences 
extracted the estimation of epipolar geometry and calibration of 
cameras can be done by well-known algorithms [1][8][10]. 
Matching different images of a single scene may be difficult, 
because of occlusion, aspect changes and lighting changes that 
occur in different views. Still-image matching algorithms 
[2][3][4][5] search for still features in images such as: edges, 
corners, contours, color, shape etc. They are usable for image 
pairs with small differences; however they may fail at occlusion 
boundaries and within featureless regions. They may fail if the 
chosen primitives or features cannot be reliably detected. The 
views of the scene from the various cameras may be very 
different, so we cannot base the decision solely on the color or 
shape of objects in the scene. 
In a multi-camera observation system the video sequences 
recorded by cameras can be used for estimating matching 
correspondences between different views. Video sequences in 
fact also contain information about the scene dynamics besides 
the static frame data. Scene dynamics is an inherent property of 
the scene independently of the camera positions, the different 
zoom-lens settings and lighting conditions. References [6] and 
[7] present approaches in which motion-tracks of the observed 

objects are aligned. However, in these cases a robust capability 
for object tracking is assumed; and this is the weak point of both 
methods.  
As a previous work the use of co-motion statistics for the 
estimation of projective geometry was introduced in [9][10]. The 
approach proposed in [10] is an extension, albeit a considerable 
one, of the previously mentioned sequence-based image 
matching methods for non-structured estimation [6][7].  In 
[9][10] we have introduced the use of co-motion statistics for the 
matching and alignment of two overlapping views and 
estimation of the common groundplane. In that approach, instead 
of the trajectories of moving objects, the statistics of concurrent 
motions – the so-called co-motion statistics – were used to locate 
matching points in pairs of images. The inputs of the system are 
video sequences derived from cameras located in fixed 
positions; however, the actual camera positions, orientations, 
and zoom settings are unknown.  
The main advantage of the use of co-motion statistics that no a 
priori information about motion, objects or structures is needed. 
The disadvantage of co-motion statistics is that the system needs 
huge memory for storing it. In [11] we presented an algorithm 
for the efficient estimation of co-motion point-pairs and a robust 
feature extraction method. In which less memory is needed for 
coding scene dynamics, the calculations have been done on-line.  
Here we show that not only deterministic motions [11], but also 
random motions can be used for the extraction of point 
correspondences and estimation of epipolar geometry. The paper 
is organized as follows: in section 2 main steps of the algorithm 
are described, subsection 2.1 is a brief summary about co-
motion statistics, which is followed by the description of change 
detection and coding of scene dynamics, extraction of point-
correspondences; in section 3 the experiments and results are 
presented. 
 

2. ESTIMATION OF EPIPOLAR GEOMETRY 
 
The algorithm described here is based on the use of co-motion 
statistics for matching images [10]. The steps of the algorithm 
are the following: 

1. Detect changes. 
2. Store changes and the dynamics of the scene that the 

scene can be reconstructed later. 
3. Extract point-correspondences from the stored scene 

dynamics – detection of features, extraction of 
candidates. 



4. Estimate the model – rejection of outliers and 
estimation of fundamental matrix. 

 
2.1. Co-motion statistics 
 
Scene dynamics is encoded in co-motion statistics, so if static 
features (corners, edges etc.) cannot be reliably detected the 
information for matching can be extracted from co-motion 
statistics [9][10].  
In case of single video sequence a motion statistical map for a 
given pixel can be recorded as follows: when motion is detected 
in a pixel, the coordinates are recorded of all pixels where 
motion is also detected at that moment. In the motion statistical 
map the values of the pixels at the recorded coordinates are 
updated. After all, this statistical map is normalized to have 
global maximum equal to 1. 
In case of stereo video sequences to each point in the images, 
two motion-statistic maps are assigned: a local and a remote. 
Local map means the motion-statistical map in the image from 
the pixel is selected, the remote motion-statistical map is refer to 
the motions in the other image. After the motion detected on the 
local side, for the points defined by the local motion map the 
local statistical map updated by the local motion map. For each 
point where motion is detected on the local side, the local 
motion map of the remote side updates the corresponding remote 
statistical map. An example of co-motion statistics for inlier 
point-pairs can be seen in Figure 1. 
 

 
Figure 1 Top images: example of co-motion statistics for inlier 
point-pairs. Below: a corresponding point-pair is shown in the 
images of the left and right cameras. 

The advantage of this interpretation of the scene dynamics is 
that point correspondences in the above case were interpreted as 
maximums of statistical maps and their extraction is very simple. 
The main disadvantage of co-motion statistics is that the system 
must keep two statistical maps (grayscale pictures) for each 
pixel of input image, which means that the algorithm needs huge 
memory, in case of 160*120 statistical map resolution it means 
1,4 GBs! 
 
 
 
 

2.2.  Change detection and coding scene dynamics 
 
For the detection of changes we have used the absolute 
difference of two consecutive frames. This method is fast and 
very sensible with low threshold value. The result of the change 
detection can be either a binary (pixel value is 1 if change is 
detected and 0 else) or a grayscale (pixel value is the real value 
of absolute difference) image. Some disadvantage comes from 
the cases that often detect noises and background flashings. In 
our algorithm for matching of images we do not need precise 
change detection and object extraction, because of the later 
statistical processing these minor errors are irrelevant.  
Having the result of change detection the scene dynamics can be 
coded and stored. To overcome the problem that huge memory 
is needed for storing co-motion statistics we propose to store the 
motion history in a vector for each pixel instead of storing an 
image-size map for each of them as in [9][10]. This motion 
history vector has as many entries as long is the video sequence 
and in each of its entry has 1 if change was detected at the given 
frame or zero if not. This coding reduces the memory needs 
while the scene dynamics is also coded in the vectors. The 
disadvantage is that for the extraction of point correspondences 
all the motion histories of cameras must be compared. The 
advantage of this method is that less memory is needed for the 
storage of scene dynamics than in the case of co-motion 
statistics: 2.3 MB in case of 500 frame long image sequence, 
while for the storing of co-motion statistics 1,4 GB is needed. 
 
2.3. Extraction of point correspondences 
 
Usually the estimation of point correspondences in two given 
images consists of three steps. Firstly, features are detected then 
candidates of point pairs are extracted and, finally the outliers 
are rejected and the given model is estimated. 
 
2.3.1. Feature detection 
From the images of the two views we extract feature points 
related to pixels of real objects (cars, people etc.) moved through 
them. We don’t want to extract pixels in which change was 
detected due to flashings or random noise on the background. 
For the extraction of these points we have compared two 
methods. In the first method we are integrating the motion 
histories. If this value is above some threshold then the 
corresponding pixel is selected as a feature point. This method is 
very sensitive to the threshold value. 
In the second we have calculated the Shannon entropy of pixels’ 
motion history vectors.  
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where p(xi) is the frequency of xi in vector v, v – real-valued 
motion history vector. Experiments with different indoor and 
outdoor videos showed that the entropy of motion history 
vectors of flashings and other random noise and the entropy of 
motion history of deterministic motion of real objects have 
Gaussian distribution as it is shown in Figure 2. 
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Figure 2 The distribution of Shannon entropy of flashings (a 
curve) and deterministic motion (b curve). 

In order to get the right threshold value for the entropy we 
analyzed the obtained distributions. The proportion of outliers in 
the set of point candidates is essential for the RANSAC 
algorithm that we have used for the rejection of outliers (see 
section 2.4.3) and estimation of fundamental matrix [8]. Larger 
the proportion of outliers larger is the running time of the 
RANSAC algorithm [8]. The aim of the feature extraction is to 
provide a necessary amount of matchings for the estimation of 
fundamental matrix (at least seven matchings). Setting the 
threshold value equal to 0.2 usually provides enough matchings 
and it is easy to calculate that the proportion of outliers in the set 
of point-candidates will be 15%, which is small enough to 
ensure small running time of the RANSAC algorithm [8]. 
Instead of traditional definition of entropy for vector v, we have 
also tested the formula for the estimation of the “entropy”: 
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where vi are the elements of the history vector v, N – the length 
of history vector v. 
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Figure 3 The distribution of entropy* (see formula (2)) of 
flashings (a curve) and deterministic motion (b curve). 

Applying this formula is not a serious restriction to our 
algorithm. The meaning of its output is similar to that of the 
output of the traditional formula. If in a given pixel the system is 
observing only small flashings then the value of entropy* will be 

high (logarithm of a small number is a large number in absolute 
value). If object is moving through the pixel then the detected 
change will be much higher then in case of flashings and the 
value of entropy* will be low (logarithm of a large number is 
small). Figure 3 shows the distribution of entropy* of flashings 
and deterministic motions. Similarly, we set the threshold value 
for entropy* equal to 0.32 as for Shannon entropy. The main 
advantage of formula (2) against (1) that it can be calculated on-
line, from frame to frame as the implemented change detection 
algorithm. 
It is obvious that if all our candidate points are from the same 
region of input images and close to each other then small error in 
point coordinates (which comes from the change detection, 
which is, of course, not perfect) will result in great error in final 
alignment of the whole images. To reduce it we forced points to 
be better distributed in the region by introducing some structural 
constraints: images are divided into blocks of n*n and for each 
block the algorithm searches for only one candidate point, for 
which the integrate of motion history is the maximum and its 
entropy is within a given interval. 
 
2.4.2 Extraction of candidate point pairs 
Having the features points detected in both views for the 
extraction of candidate point-pairs the feature points of different 
views must be compared. For the comparison of feature points, 
the corresponding motion history vectors in our case, we have 
implemented different methods for binary and real-valued 
motion history vectors. 
In the case of real-valued motion history vectors the extraction 
of candidate point pairs is based on the calculation of the 
correlation between a given feature point and feature points of 
the other view.  
In the case of binary motion history the time-series of the 
history-vectors are filtered. This morphological filter removes 
single peaks and groups neighbor peaks if they are within a 
predefined distance. After filtering the Hamming distance is 
calculated as correlation between two binary motion history 
vectors of different views. 
 
2.4.3. Robust estimation of the model and rejection of outliers 
The geometry of two views is well understood [8]. In the case of 
uncalibrated cameras the fundamental matrix encodes the 
relationship between two views [8][10]. For the estimation of 
fundamental matrix and rejection of outliers from the set of 
candidate point-pairs we have implemented the RANSAC 
algorithm [8][10]. Having the matchings extracted and the 
fundamental matrix computed the camera matrices easily can be 
estimated and 3D locations can be reconstructed by using 
triangulation [8]. 
 

3. EXPERIMENTAL RESULTS 
 
In order to show that random motion can be used for camera 
calibration we set up the following experiment. A small tree was 
blown with a periodically rotating (forth and back) ventilator 
and the generated random motion of the tree’s leaves was 
recorded with two cameras at resolution 320×240, at same zoom 
level and with same cameras (LAB videos). The point 
correspondences were extracted by using real-valued motion 
history and thresholding of integrated motion history for feature 



extraction. The above described entropy-based feature extraction 
cannot be used for feature extraction in this experiment because 
of the random motion of tree’s leaves. The estimated epipolar 
pencil can be seen in Figure 4. 

 
Figure 4 The epipolar pencils for the LAB test videos. 
 
   

4. CONCLUSIONS 
 

We have shown that partially overlapping camera views can be 
registered by motion history vectors of images’ reference pixels 
of outdoor cameras placed in freely-chosen positions, viewing 
arbitrary scenes where motion is present, and this matching is 
automatic without any human interaction. We have shown that 
the registration of views can be done even if cameras record 
random motion. Based on the registration of co-motion point-
pairs we have estimated the epipolar geometry of the scene and 
cameras easily can be calibrated by using well-known methods 
[8]. 
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