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Abstract

In this paper we address the color modelling problem of cast shadows in video sequences. We illustrate that the performance of
shadow detection can be improved significantly through appropriate color space selection, if for practical purposes, we should keep
the number of free parameters of the method low. Hence, we compare several well known color spaces with a six-parameter shadow
model embedded into a globally optimal MRF framework. Experimental results on real-life videos show that CIE L*u*v* color
space is the most efficient.
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1. Introduction

Detection of foreground objects is a crucial task in visual
surveillance systems. If we are able to retrieve the accurate
silhouettes of the objects or object groups, their high-level
description could be more sophisticated, so it is favorable
e.g. in detection of people (Havasi et al., 2006) or vehicles
(Rittscher et al., 2000), and in activity analysis (Stauffer
& Grimson, 2000). The presence of moving shadows on the
background makes difficult to estimate shape or behavior
of the objects, therefore, shadow detection is an important
issue in the applications. However, we should not focus
on self shadows (i.e. shadows appearing on the foreground
objects), which are part of the foreground, and static
shadows (cast shadows of the static objects), because they
correspond to the background.
Apart from a few geometry based approaches which are
suited to specific conditions (Havasi & Szirányi, 2006),
(Yoneyama et al., 2003), shadow detection is usually done
by color filtering. Still image based methods (Fredembach
& Finlayson, 2005),(Finlayson et a., 2006) attempt to find
and remove shadows in the single frames independently.
However, these models have been evaluated only on high

quality images where the background has a uniform color
or texture pattern, while in video surveillance, we must
expect images with poor quality and resolution. The au-
thors in (Finlayson et a., 2006) note that their algorithm is
robust when the shadow edges are clear, but artifacts may
appear in cases of images with complex shadows or diffuse
shadows with poorly defined edges. For practical use, the
computational complexity of these algorithms should be
decreased (Fredembach & Finlayson, 2005).
Some other methods focus on the discrimination of the
shadow edges, and edges due to objects boundaries (Gev-
ers & Stokman, 2003), (Khan & Reinhard, 2005). However,
it may be difficult to extract connected foreground regions
from the resulting edge map, which is often ragged (Gevers
& Stokman, 2003). Complex scenarios containing several
small objects or shadow-parts may be also disadvanta-
geous for these methods.
(Prati et al., 2003) gives a thematic overview on shadow
detection for video surveillance. The methods are classified
into groups based on their model structures, and the per-
formance of the different model-groups are compared via
test sequences. The authors note that the methods work
in different color spaces, like RGB (Mikic et al., 2000)
and HSV (Cucchiara et al., 2001), however, it remains
open-ended, how important is the appropriate color space
selection, and which color space is the most effective re-
garding shadow detection. Moreover, we find also further
examples: (Rittscher et al., 2000) used only gray levels for



shadow segmentation, other approaches were dealing with
the CIE L*u*v* (Martel-Brisson & Zaccarin, 2005) and
CIE L*a*b* (Rautiainen et al., 2001) spaces, respectively.
For the above reasons, the main issue of this paper is to
give an experimental comparison of different color models
regarding cast shadow detection on the video frames. For
the comparison, we propose a general model framework,
which can work with different color spaces. During the
development of this framework, we have carefully con-
sidered the main approaches in the state-of-the art. Our
presented model is the generalization of our previous work
(Benedek & Szirányi, 2006), while the preliminary version
of this study was published in (Benedek & Szirányi, 2007).
We note that an experimental evaluation of color spaces
have been already done for edge classification in (Khan &
Reinhard, 2005), but in the current paper, we address the
detection of the shadowed and foreground regions, which
is a fairly different problem.

2. Overview on different approaches

In (Prati et al., 2003), the authors distinguished deter-
ministic methods (e.g. Cucchiara et al. (2001)), which use
on/off decision processes at each pixel, and statistical ap-
proaches (see Mikic et al. (2000)) which contain probability
density functions to describe the shadow-membership of a
give image point. The classification of the methods whether
they are deterministic or statistical depends often only on
interpretation, since deterministic decisions can be done us-
ing probabilistic functions also. However, statistical meth-
ods have been widely distributed recently, since they can be
used together with Markov Random Fields (MRF) to en-
hance the quality of the segmentation significantly (Wang
et al., 2006).
The first model, which we introduce in this paper is a de-
terministic method: the pixels are classified independently
and the rate of the correct pixel-classification is investi-
gated. That way, we can perform a relevant quantitative
comparison of the different color spaces, since the deci-
sion for each pixel depends only on the corresponding local
color-feature value; post processing effects whose efficiency
may be environment-dependent do not take account here.
Thereafter, we give a probabilistic interpretation to this
model and we insert it into an adaptive MRF framework
for foreground-background-shadow segmentation which we
developed earlier (Benedek & Szirányi, 2006). We compare
the results after MRF optimization qualitatively and quan-
titatively.
Another important point of view regarding the categoriza-
tion of the algorithms in (Prati et al., 2003) is the discrim-
ination of the non parametric and parametric cases. Non
parametric, or ’shadow invariant’ methods convert the pixel
values into an illuminant invariant feature space: they re-
move shadows instead of detecting them. This task is often
performed by a color space transformation. The normal-
ized rgb (Cavallaro et al., 2004),(Paragios & Ramesh, 2001)

and C1C2C3 spaces (Salvador et al., 2004) 1 are supposed
to fulfill color constancy through using only chrominance
color components. We find an overview on these approaches
in (Salvador et al., 2004) indicating that several assump-
tions are needed regarding the reflecting surfaces and the
lightings. (Khan & Reinhard, 2005) emphasizes the limits
of these methods: outdoors, shadows will have a blue color
cast (due to the sky), while lit regions have a yellow cast
(sunlight), hence the chrominance color values correspond-
ing to the same surface point may be significantly differ-
ent in shadow and in sunlit. We have also found in our ex-
periments that the shadow invariant methods fail outdoors
several times, and they are rather usable indoors (Fig. 7).
Moreover, since they ignore the luminance components of
the color which is a very important factor both in the hu-
man and computer vision, these models become sensitive
to noise. We show in a later part of this paper that the rg
and C1C2C3 spaces are also less effective in the parametric
case.
For the above reasons, we develop a parametric model: first,
we estimate the mean background values of the individual
pixels trough a statistical background model (Stauffer &
Grimson, 2000), then we extract feature vectors from the
actual and the estimated background values of the pixels
and apply shadow detection as solving a classification prob-
lem in that feature space. This approach is widespread in
the literature, and the key points are the way of feature ex-
traction, the color space selection and the shadow-domain
description in the feature space. We will deal with these is-
sues in the following sections of the paper. In Section 3, we
introduce the feature vector which characterizes the shad-
owed pixels effectively. In Section 4, we describe the chosen
shadow domain in the feature space, and define the deter-
ministic pixel classification method. We show the quantita-
tive classification results with the deterministic model re-
garding five real-world video sequences in Section 5.1. Fi-
nally, we introduce the MRF framework and analyse the
segmentation results in Section 5.2.
We use a few assumptions in the paper: (1) The camera
stands in place and has no significant ego-motion. (2) The
background objects are static (e.g. there is no waving river
in the background), and the topically valid ’background
image’ is available in each moment (e.g. by the method of
(Stauffer & Grimson, 2000)). (3) There is one emissive light
source in the scene (the sun or an artificial source), but we
consider the presence of additional effects (e.g. reflection),
which may change the spectrum of illumination locally. (4)
We assume that the estimated background values of the
pixels correspond usually to the illuminated surface points.
Obviously, this is not the case if the pixel is covered by a
static shadow, which is not handled here explicitly. How-
ever, according to our tests, our approach is able to handle
a few static shadows robustly.

1 We refer later to the normalized rgb as rg space, since the third
color component is determined by the first and second.
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Method Color space Number of parameters/ Outdoor/ Number of test

color channels∗ Indoor tests sequences

Cavallaro et al. (2004) rg invariant both 6

Salvador et al. (2004) C1C2C3 invariant both 4

Paragios & Ramesh (2001) rg invariant indoor 1

Mikic et al. (2000) RGB 1 outdoor 1

Rittscher et al. (2000) grayscale 2 outdoor 1

Wang et al. (2006) grayscale 2 indoor 4

Cucchiara et al. (2001) HSV 1.33 both 5

Martel-Brisson & Zaccarin (2005) CIE L*u*v* 2 indoor 1

Rautiainen et al. (2001) CIE L*a*b*/HSV N.a. outdoor 3

Siala et al. (2004) RGB N.a.‡ outdoor 1

Proposed All from above 2 both 5

Table 1
Overview on different methods. †Only in case of parametric methods: the (average) number of parameters of the shadow detector module
for one color channel. ‡Proportional to the number of support vectors after supervised training.

3. Feature vector

Here, we define features for a parametric case where a
shadow model can be constructed including some challeng-
ing environmental conditions. First, we introduce a well-
known physical approach on shadow detection with mark-
ing that its model assumptions may fail in real-world video
scenes. Instead of constructing a more difficult illumina-
tion model, we overcome the appearing artifacts with a sta-
tistical description. Finally, the efficiency of the proposed
model is validated by experiments.

3.1. Physical approach on shadow detection

According to the illumination model (Forsyth, 1990) the
response g(s) of a given image sensor placed at pixel s can
be written as

g(s) =
∫

e(λ, s)ρ(λ, s)ν(λ)dλ, (1)

where e(λ, s) is the illumination function, ρ(s) depends on
the surface albedo and geometry, while ν(λ) is the sensor
sensitivity. Accordingly, the difference between the shad-
owed and illuminated background values of a given surface
point is caused only by the different local value of e(λ, s).
For example, outdoors, the illumination function observed
in sunlit is the composition of the direct component (sun),
the Rayleigh scattering (sky), causing that the ambient
light has a blue tingle (Lynch & Livingstone, 1995), and
residual light components reflected from other non-emissive
objects. In the shadow, the effect of the direct component
is missing.
Although the validity of eq. (1) is already limited by several
scene assumptions (Forsyth, 1990), in general, it is still too
difficult to exploit appropriate information about the corre-
sponding background-shadow values, since the components

of the illumination function are unknown. Therefore, fur-
ther strong simplifications are used in the applications. Ac-
cording to (Finlayson et a., 2006) the camera sensors must
be exact Dirac delta functions: ν(λ) = q0 ·δ(λ−λ0) and the
illumination must be Planckian (Wyszecki & Stiles, 1982).
In this case, eq.(1) implies the well-known ’constant ratio’
rule. Namely, the ratio of the shadowed gsh(s) and illumi-
nated value gbg(s) of a given surface point is considered to
be constant over the image:

gsh(s)
gbg(s)

= A, (2)

where A is the shadow ’darkening factor’, and it does not
depend on s.
In the CCD camera model (Forsyth, 1990) the RGB sen-
sors are narrow banded and the constant ratio rule is
supposed to be valid for each color channel independently.
Accordingly, the shadow descriptor is a triple [Ar, Ag, Ab]
containing the ratios of the shadowed and illuminated
background values for the red, green and blue channels.
However, due to the deviation of the scene properties from
the model assumptions (Forsyth, 1990), imprecise estima-
tion of the background values (Stauffer & Grimson, 2000)
and further artifacts caused by video compression and
quantification, the ratio of the shadowed and estimated
background values is not a constant in fact. On the other
hand, to prescribe a domain instead of a single value for
the ratios results a powerful detector (Siala et al., 2004).
In this way, shadow detection is a one-class-classification
problem in the three dimensional color ratio space.

3.2. Constant ratio rule in different color spaces

In this section, we examine, how we can use the previous
physical approach in different color systems.
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We begin the description with some notes. We assume that
the camera presents the frames in the RGB space, and for
the different color space conversions, we use the equations
in (Tkalcic & J. Tasic, 2003). The ITU D65 standard is
used for calibration of the CIE L*u*v* and L*a*b* spaces.
In the HSV, CIE L*u*v* and L*a*b* spaces we should
discriminate two types of color components. One compo-
nent is directly related to the brightness of the pixel (V,
respectively L*; we refer to them later as ’luminance’ com-
ponents), while the other components correspond to the
’chrominances’. We classify also the color spaces: since the
normalized rg and C1C2C3 spaces contain only chromi-
nance components we will call them ’chrominance spaces’,
while grayscale and RGB are purely ’luminance spaces’. In
this terminology, HSV, CIE L*u*v* and L*a*b* are ’mixed
spaces’.
As we stated in the last section, the ratios of the shadowed
and illuminated values of the R, G, B color channels re-
garding a given pixel are near to a global reference value
[Ar, Ag, Ab]. In the following, we show by experiments that
the ’constant ratio rule’ is also a reasonable approximation
regarding the ’luminance’ components of other color spaces.
While shadow may darken the ’luminance’ values of the
pixels significantly, the changes in the ’chrominances’ are
usually small. In (Cucchiara et al., 2001), the hue difference
was modelled as a zero-mean noise factor. This approach is
sometimes inaccurate: outdoors, due to the ambient light
of the blue sky, the shadow shifts to the ’blue’ color do-
main. We will show that modelling the offset between the
shadowed and illuminated ’chrominance’ values of the pix-
els with a Gaussian additive term is reasonable.
To sum it up, if the current value of a given pixel in a
given color space is [x0, x1, x2] (the indices 0, 1, 2 corre-
spond to the different color components), the estimated (il-
luminated) background value is there [m0,m1,m2], we de-
fine the shadow descriptor ψ = [ψ0, ψ1, ψ2] by the follow-
ing, for i = {0, 1, 2}:
• If i is the index of a ’luminance’ component:

ψi(s) =
xi(s)
mi(s)

. (3)

• If i is the index of a ’chrominance’ component:

ψi(s) = xi(s)−mi(s). (4)

We classify s as shadowed point, if its ψ(s) value lies in a
prescribed domain.
The efficiency of this feature selection can be observed in
Fig. 1, where we plot the one dimensional marginal his-
tograms of the occurring ψ0, ψ1 and ψ2 values for manu-
ally marked shadowed and foreground points of a 75-frames
long outdoor surveillance video sequence (’Entrance pm’).
Apart from some outliers, the shadowed ψi values lie for
each color space and each color component in a ’short’ in-
terval, while the difference of the upper and lower bounds
of the foreground values is usually greater. However, there
is a significant overlap between the one dimensional fore-
ground and shadow histograms, therefore, as we examine

in the next section, an efficient shadow domain description
is needed.
We define the descriptor in grayscale and in the rg space
similarly to eq. (3) and (4) considering that ψ will be a one
and a two dimensional vector, respectively.

4. Shape of the shadow domain

The shadow domain is usually defined by a manifold
having a prescribed number of free parameters, which fit
the model to a given scene/situation. Previous methods
use different approaches. The domain of shadows in the
feature space is usually an interval for grayscale images
(Wang et al., 2006). Regarding color scenes, this domain
could be a three dimensional rectangular bin (Cucchiara
et al., 2001): ratio/difference values for each channel lie
between defined threshold; an ellipsoid (Mikic et al., 2000),
or it may have general shape, like in (Siala et al., 2004).
In the latter case a Support Vector Domain Description is
proposed in the RGB color ratios’ space.
By each domain-selection we must consider overlap be-
tween the classes, e.g. there may be foreground points
whose feature values are in the shadow domain. There-
fore, the chosen shadow-domain should be not only large
enough, containing ’almost all’ the feature values cor-
responding to the occurring shadowed points, but also
’narrow’ to decrease the number of the background or fore-
ground points which are erroneously classified as shadows.
Accordingly, if we ’only’ prescribe that a shadow descrip-
tor should be accurate, the most general domain shape
seems to be the most appropriate. However, in practise, a
corresponding problem appears: the shadow domain may
alter significantly (and often rapidly) in time due to the
changes in the illumination conditions, and adaptive mod-
els are needed to follow these changes. Sometimes, it is not
possible to train a model with supervision regarding each
forthcoming case of illumination. Therefore, those domains
are preferred, which have less free parameters, and we can
construct an update strategy regarding them.
For these reasons, we used an elliptical shadow domain
descriptor having parallel axes with the xyz co-ordinate
axes:

Pixel s is shadowed ⇔
2∑

i=0

(
ψi(s)− ai

bi

)2

≤ 1, (5)

where {ai, bi | i = 0, 1, 2} are the shadow domain parame-
ters. For these parameters, a similar update procedure can
be constructed to that we proposed in (Benedek & Szirányi,
2006). We explain briefly the adaption algorithm in Ap-
pendix A.
We note that with the SVM method (Siala et al., 2004),
the number of free parameters is related to the number of
the support vectors, which can be much greater than the
six scalars of our model. Moreover, for each situation, a
novel SVM should be trained. For these reasons, we pre-
ferred the ellipsoid model, and in the following we examine
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Fig. 1. One dimensional projection of histograms of foreground (red) and shadow (blue) ψ values in the ’Entrance pm’ test sequence.

Fig. 2. Two dimensional projection of foreground (red) and shadow (blue) ψ values in the ’Entrance pm’ test sequence. Green ellipse is the
projection of the optimized shadow boundary.

its limits. For the sake of completeness, we note that the
domain defined by eq. (5) becomes an interval if we work
with grayscale images, and a two dimensional ellipse in the
rg space.
We visualize the shadow domain of the ’Entrance pm’ test
sequence in Fig. 2, where the two dimensional projection of
the occurring foreground and shadow ψ values are shown
corresponding to different color space selections. We can
observe that the components of vector ψ are strongly corre-
lated in the RGB space (and also in C1C2C3), and the pre-
viously defined ellipse cannot present a narrow boundary.
(It would be better to fit an ellipse with arbitrary axes, but
that choice would cause more free parameters in the sys-
tem.) In the HSV space, the shadowed values are not within
a convex hull, even if we considered that the hue compo-
nent is actually periodical (hue = k ∗ 2π means the same
color for each k = 0, 1, . . .). Based on the above facts, the
CIE L*u*v* space seems to be a good choice. In the next
section, we support this statement by experimental results.

5. Evaluation

The evaluations were done through manually generated
ground truth sequences regarding the following five videos:
• ’Laboratory’ test sequence from the benchmark set

(Prati et al., 2003). This shot contains a simple indoor
environment. We generated ground truth for 20 frames.

• ’Highway’ video (from the same benchmark set). This
sequence contains dark shadows but homogenous back-
ground without illumination artifacts (52 frames).

• ’Entrance am’ (20 frames), ’Entrance noon’ (20 frames)
and ’Entrance pm’ (75 frames) sequences captured by the
’Entrance’ (outdoor) camera of our university campus
in different parts of the day. These sequences contain
difficult illumination and reflection effects and suffer from
sensor saturation (dark objects and shadows).

In the following, we present evaluations in two ways. In Sec-
tion 5.1, we show the tentative limits of the elliptical shadow
domain defined by eq. (5). The goal of these experiments is
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to compare the foreground-shadow discriminating ability
of the different color spaces purely based on the extracted
ψ features. Here, we set the parameters manually, and do
not take into consideration local connectivity or post pro-
cessing. Although post processing could enhance the qual-
ity of segmentation, the improvements may depend on the
scene-conditions. For example, in the ’Highway’ sequence,
we can estimate easily the appearing shape and size of the
objects, and we may get reasonable results by specific post
processing rules (Mikic et al., 2000) even if the color space
selection is not optimal. However, these results may be not
competent regarding other videos. Success of parameter es-
timation depends also on the environment rather than it
would characterize the color space.
On the other hand, the above color model will be inserted
into a foreground-background-shadow segmentation pro-
cess for practical use (Section 5.2). Here, we suit the pro-
posed model to an adaptive Bayesian model-framework,
and show that the advantage of using the appropriate color
space can be measured directly in the applications. In the
second part of the experiments, we use the parameter-
updating procedure of Appendix A.

5.1. Comparative evaluation with the ellipse model

In this experiment, we collect two sets of ψ values cor-
responding to manually marked foreground and shadowed
pixels, respectively. We investigate how many pixels are
classified properly by the ellipse model with different color
spaces. Denote the number of correctly identified fore-
ground pixels of the evaluation sequence by TF . Similarly,
we introduce TS for the number of well classified shadowed
points, MF and MS is the number of misclassified fore-
ground, and shadowed ground truth points, respectively.
First, we define the Recall (R) and Precision (P) rates of
foreground detection (Sheikh & Shah, 2005):

Recall : R =
TF

TF + MF
Precision : P =

TF

TF + MS
.

For some optimized ellipse parameters, we plot the corre-
sponding Precision and Recall values regarding the ’Labo-
ratory’ and ’Entrance pm’ test sequences in Fig. 3. We can
observe that the CIE L*a*b* and L*u*v* produce the best
results in both cases (the corresponding P/R curve is high-
est). However, the relative performance of the other color
systems is strongly different regarding the two videos. In
the indoor scene, the grayscale and RGB segmentations are
the least effective, while in the ’Entrance pm’ sequence, the
performance of the chrominance spaces is the poorest.
In the further tests, we will use the F -measure (Van Rijs-
bergen , 1979) which combines recall and precision in a sin-
gle efficiency measure (it is the harmonic mean of precision
and recall):

F =
2 ·R · P
R + P

. (6)

Video Scene Frames† Dark‡ Worst Best

Laboratory indoor 20 0.73 gray,
RGB

Luv, Lab

Entrance am outdoor 20 0.50 gray,
RGB

Luv, Lab

Entrance pm outdoor 75 0.39 C1C2C3,
rg

Luv, Lab

Entrance noon outdoor 20 0.35 C1C2C3,
rg

Luv, Lab

Highway outdoor 52 0.23 C1C2C3,
rg

Luv,
RGB

Table 2
Indicating the two most successful and the two less effective color
spaces regarding each test sequence. We also denote †the number of
frames which we evaluated through manually generated ground truth
masks and ‡the mean darkening factor for shadows in grayscale.

We summarized the F rates in Fig. 4, regarding the test
sequences. Also here, we can see that the CIE L*a*b* and
L*u*v* spaces are the most efficient. As for the other color
systems, in sequences containing dark shadows (’Entrance
pm’, ’Highway’), the ’chrominance spaces’ produce poor
results, while the gray, RGB and Lab/Luv results are simi-
larly effective (see also Table 2). If shadow is brighter (’En-
trance am’, ’Laboratory’), the performance of the ’chromi-
nance spaces’ becomes reasonable, but the ’luminance
spaces’ are relatively poor. (In this case, shadow is charac-
terized better by the illuminant invariant features than the
luminance darkening domain). Since the hue coordinate in
HSV is very sensitive to the illumination artifacts (Section
3), the HSV space is effective only in case of light-shadow.

5.2. Segmentation by using Bayesian optimization

5.2.1. Model description
The results in the previous section confirm that using

the defined elliptical shadow domain, the CIE L*u*v*
color space is the most effective to separate shadowed and
foreground pixels only considering their colors, if we have
enough training data. However, in several applications, we
should consider the following facts:
• Representative ground truth foreground-shadow points

are not available, the optimal ellipse parameters should
be estimated somehow.

• The classification of a given pixel is usually done consid-
ering other effects than color, like neighborhood connec-
tion.

Since we want to test the color model itself, we use a
Markov Random Field (MRF) optimization procedure
(Geman & Geman , 1984) to get the globally optimal seg-
mentation upon the above model.
The segmentation framework is an MRF-Potts model
(Potts, 1952). An image S is considered to be a two-
dimensional grid of pixels (sites), with a neighborhood
system on the lattice. The procedure assigns a label ωs

to each pixel s ∈ S form the label-set: L = {bg,sh,fg}
corresponding to the three classes: foreground (fg), back-
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Fig. 3. Evaluation of the deterministic model Recall-precision curves corresponding to different parameter-settings on the ’Laboratory’
and ’Entrance pm’ sequences.

Fig. 4. Evaluation of the deterministic model F coefficient (eq. 6) regarding different sequences

ground (bg) and shadow (sh). Therefore, the segmentation
is equivalent with a global labeling Ω = {ωs | s ∈ S}. Each
class at each pixel position is characterized by a conditional
density function: pk(s) = P (xs|ωs = k), k ∈ L, s ∈ S. Eg.
pbg(s) is the probability of the fact that the background
process generates the observed color value xs at pixel s.
Following the Potts model, the optimal segmentation cor-
responds to the labeling which minimizes:

Ω̂ = argminΩ

∑

s∈S

−pωs(s) +
∑

r,q∈S

Φ(ωr, ωq), (7)

where the Φ term is responsible for getting smooth, con-
nected regions in the segmented image. Φ(ωr, ωq) = 0 if q
and r are not neighboring pixels, otherwise:

Φ(ωr, ωq) =




−β if ωr = ωq

+β if ωr 6= ωq

The definition of the density functions pbg(s) and pfg(s) s ∈
S is the same, as we defined in (Benedek & Szirányi, 2006).
We use a mixture of Gaussians model for the pixel values
in the background, where the parameters are determined
automatically (Stauffer & Grimson, 2000). Regarding the
foreground, we exploit that the object-parts can usually be
characterized by typical color distributions, hence, the color
of a given foreground pixel matches to the color distribu-
tion of the set of the neighboring foreground pixels. Based
on our experiments, this approach is more effective than
using a simple uniform distribution for pfg(.)(Rittscher et

al., 2000), and more general, since it does not need perma-
nently high frame-rate like deriving the pixel-state transi-
tion probabilities in (Wang et al., 2006).
Before inserting our model into the previously defined MRF
framework, we give to the shadow-classification step de-
fined in Section 4, a probabilistic interpretation. We rewrite
eq. (5): we match the current ψ(s) value of pixel s to a prob-
ability density function f

(
ψ(s)

)
, and decide its class by:

pixel s is shadowed ⇔ f
(
ψ(s)

) ≥ t. (8)

The domains defined by eq. (5) and eq. (8) are equivalent,
if f is a Gaussian density function (η):

f
(
ψ(s)

)
= η(ψ(s), µψ, Σψ) =

=
1

(2π)
3
2

√
detΣψ

exp
[
−1

2
(ψ(s)− µψ)T Σ

−1

ψ (ψ(s)− µψ)
]

with the following parameters:

µψ = [a0, a1, a2]T , Σψ = diag{b2
0, b

2
1, b

2
2},

while
t = (2πb0b1b2)−

3
2 e−

1
2 .

Using Gaussian distribution for the occurring feature val-
ues is also supported by the one dimensional marginal his-
tograms in Fig. 1.
In the following, the use of the previously defined probabil-
ity density functions in the MRF model is straightforward:

psh(s) = f
(
ψ(s)

)
.
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The flexibility of this MRF model comes from the fact
that we defined ψ(s) shadow descriptors for different color
spaces differently in Section 3.

5.2.2. Test results
Fig. 5 shows the MRF-segmentation results for two

frames of each test sequence using five color spaces:
grayscale, C1C2C3, HSV, RGB and CIE L*u*v*. (Note
that in the experiments, the results of the CIE L*a*b*
space have been very similar to the L*u*v* outputs, while
the rg has worked similarly to C1C2C3). We can observe
that the CIE L*u*v* space outperforms significantly the
other ones, while C1C2C3 is very poor in cases of sharp
shadows. A typical problem regarding the HSV and RGB
spaces is that foreground ’glories’ may appear around
some dark shadow parts due to the penumbra of cast
shadow (Salvador et al., 2004) and video compression. On
the other hand, the proposed probabilistic model removes
these artifacts with the other color spaces.
Next, we perform quantitative evaluations using the MRF
model. In Section 5.1, we measured purely the ability to
discriminate foreground and shadowed pixels. Since the
present model uses three classes and the goal is accurate
foreground detection, we should also consider the error
rate between foreground and background, however, the
crossover between shadow and background does not count
for errors. Therefore, we modified the definition of the
recall and precision rates:

Recall : R∗ =
TF

TF + M∗
F

Precision : P ∗ =
TF

TF + M∗
S

,

where M∗
F is the number of misclassified foreground points

(i.e. foreground pixels classified as background or shadow),
and M∗

S is the number of misclassified non-foreground
points of the ground truth sequence. We derive F ∗-measure
similarly to eq. (6), with using R∗ and P ∗ rates. We observe
in Fig. 4 the clear superiority of the CIE L*u*v* space.
However, the relative performance of the color spaces does
not show exactly the same tendencies as we have measured
in Section 5.1. The reason for these differences is that due
to the composite foreground model, MRF neighborhood
conditions and errors in parameter estimation, the arti-
facts may appear differently in the different sequences.
Therefore, we consider the numerical results from Section
5.1 to be more relevant to compare the capabilities of the
color spaces for shadow separation. However, the experi-
ments of this section confirm that appropriate color space
selection is crucial in the applications, and the CIE L*u*v*
space is preferred for this task.

5.2.3. Model validation
The main goal of this paper has been to find an appropri-

ate color space for efficient shadow separation with a low
number of free model-parameters. In Section 2, 3 and 4, we
referred to the appearing problems of models which have

Fig. 7. Segmentation using different methods. Row 1: video frames,
Row 2: segmentation with the C1C2C3 based illumination-invariant
method (Salvador et al., 2004), Row 2: a three-parameter method
(Mikic et al., 2000), Row 3: proposed method with CIE L*u*v* color
space selection

less than 2 free parameters for one color channel. Some cor-
responding artifacts are demonstrated in Fig. 7. For com-
parison with the proposed 6 (=3 × 2)-parameter model,
we implemented a nonparametric method based on (Sal-
vador et al., 2004), and a 3-parameter-model (Mikic et al.,
2000). Although in the indoor ’Laboratory’ sequence, all
the three methods are similarly efficient, our model outper-
forms the other ones outdoors, especially in the surveillance
shot. Note that the preliminary version of the proposed ap-
proach has been already compared to the state-of-the-art
in (Benedek & Szirányi, 2006).

6. Conclusion

This paper examined the color modelling problem of
shadow detection. We developed a model framework for
this task, which can work with different color spaces. Mean-
while, the model can detect shadows under significantly
different scene conditions and it has a few free parameters
which is advantageous in practical point of view. In our
case, the transition between the background and shadow
domains is described by statistical distributions. With this
model, we compared several well known color spaces, and
observed that the appropriate color space selection is an im-
portant issue regarding the segmentation results. We vali-
dated our method on five video shots, including well-known
benchmark videos and real-life surveillance sequences, in-
door and outdoor shots, which contain both dark and light
shadows. Experimental results show that CIE L*u*v* color
space is the most efficient both in the color based clus-
tering of the individual pixels and in the case of Bayesian

8



Fig. 5. MRF segmentation results with different color models. Test sequences (up to down): rows 1-2 ’Laboratory’, rows 3-4: ’Highway’, rows
5-6: ’Entrance am’, rows 7-8: ’Entrance pm’, rows 9-10: ’Entrance noon’.
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Fig. 6. Evaluation of the MRF model F ∗ coefficient regarding different sequences

foreground-background-shadow segmentation.
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Appendix A. Adaption of the shadow parameters

Consider the shadow domain which can be described with
the parameters of eq. (5). We found in the experiments,
that the bi parameters and the appropriate ai-values cor-
responding to the ’chrominance’ components are approxi-
mately constant in time letting us to estimate them once
in a scene. However, the mean darkening ratio (ai) of the
’luminance’ components may change significantly between
sunlit (0.3) and overcast weather (> 0.9), and these changes
are often rapid. After a sudden change, the shadow pa-
rameters from the previous moments are not more reliable.
Let l ∈ {0, 1, 2} denote a ’luminance’ channel. For a given
image we may collect histogram from the ψl(.) values of
those pixels, which are marked as non background point
by the adaptive background subtraction algorithm (Stauf-
fer & Grimson, 2000). If the image contains considerable
shadowed parts, a peak appears in the histogram near the
desired al value. Figure A.1 shows 3 typical situations from
the video ’Entrance pm’, where the optimal al was defi-
nitely 0.68. On the first image, a large shadow is observ-
able, and the peak in the histogram is very significant. On
the second one, the peak is still in the right place, however
it is smaller. On the third image there is small shadow and
the histogram is flat. Denote h[t] the location of the peak in
the histogram of the t-th frame of the sequence, v[t] is the
maximum value, v[t] is the average value. h[t] can be a good
estimation for al, if peak-value v[t] is high and significant:
v[t]
v[t] is high. We define the update process by the following:

al[t + 1] = ρ · h[t] + (1− ρ) · al[t], ρ = α · v[t] · v[t]
v[t]

where α = 0.001 is a constant factor, and we perform the
parameter update only, if there are enough non-background
points in the image.

Fig. A.1. Three images from sequence ’Entrance pm’ and the corre-
sponding histograms for the ψl values of the non-background pixels,
where l is a ’luminance’ channel.
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