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Abstract

We propose a new Bayesian method for detecting the regions of object displacements in aerial image pairs.
We use a robust but coarse 2-D image registration algorithm. Our main challenge is to eliminate the registration
errors from the extracted change map. We introduce a three-layer Markov Random Field (L3MRF) model which
integrates information from two different features, and ensures connected homogenous regions in the segmented
images. Validation is given on real aerial photos.
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A. Evaluation versus different fusion models
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Fig. 1. High resolution stereo image pair taken by the Hungarian Ministry of Defence Mapping Company c© above Budapest with a few
sec. time difference.
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Fig. 2. Feature selection.
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Fig. 3. Plot of the correlation values over the search window around two given pixels. The upper pixel corresponds to a parallax error in
the background, while the lower pixel is part of a real object displacement.

Fig. 4. Structure of the proposed three-layer MRF (L3MRF) model
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Fig. 5. Performance evaluation as a function of the block matching (v) and search window size (l) using training images from the ‘balloon1’
test set. Here, v = 7 and l = 7 proved to be optimal.
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TABLE I

COMPARISON OF DIFFERENT RELATED METHODS AND THE PROPOSED MODEL. (NOTES FOR TEST METHODS: †IN FRAME-DIFFERENCING

MODE ‡WITHOUT THE MULTIVIEW STRUCTURE CONSISTENCY CONSTRAINT)

Author(s) Published
paper(s)

Input
of the
method

Frame-rate
of the image
source

Compensated
parallax

Expected
object
motions

Related test
method

Reddy and
Chatterji

TIP 1996 Image
pair

no limit none arbitrary Reddy

Irani and
Anandan

TPAMI 1998 2 or 3
frames

no limit no limit arbitrary Epipolar

Sawhney et al. TPAMI 2000 3 frames no limit sparse, heavy arbitrary -
Pless et al. TPAMI 2000 Sequence video (≈ 25)

fps
no limit small -

Kumar et al. TIP 2006 Image
pair

video fps none arbitrary Affine

Farin and
With

TCSVT 2006 Image
pair†

no limit dense/sparse,
bounded

large Farin †

Yin and
Collins

CVPR 2007 Sequence 6fps none small -

Yuan et al. TPAMI 2007 Sequence 5fps dense parallax small Epipolar †,‡
Jodoin et al. TIP 2007 Image

pair
video fps bounded small KNNBF

Proposed
method

Image
pair

0.3− 1 fps dense/sparse,
bounded

large L3MRF
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Fig. 6. Comparative segmentations: four selected test image pairs, segmentation results with different methods and ground truth. In the
right column, the ellipses demonstrate a limitation: a high standing lamp is detected as a false moving object by all methods.
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Fig. 7. Numerical comparison of the proposed model (L3MRF) to five reference methods, using three test sets: ‘balloon1’ (52 image pairs),
‘balloon2’ (22) and ‘Budapest’ (9).

Fig. 8. Segmentation example with the Epipolar method and the proposed L3MRF model. Circle in the middle marks a motion region
which erroneously disappears using the Epipolar approach.

Fig. 9. Comparison of the proposed L3MRF model to the KNNBF method, using image pairs from the KARLSRUHE sequence (# denotes
the frame number). In consecutive frames of the video (above) KNNBF produces better results, however, our L3MRF model significantly
dominates if (below) we chose two frames with 1 second time difference
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Fig. 10. Comparing KNNBF to L3MRF. Quantitative segmentation results (F -measure) of different frame pairs from the KARLSRUHE test
sequence, as a function of the time difference between the images. The proposed method dominates if the images are taken with larger
elapsed time, which results in large object displacements.
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Fig. 11. Limitations of the observation fusion approach with the proposed feature selection. Above: 2-D joint histogram of the
f(s) = [d(s), c(s)] vectors obtained in the background and in the foreground training regions. Below: two selected background pixels
and backprojection of the corresponding feature vectors to the background histogram.

(a) Image 1 (X1) (b) Image 2 (X2) (c) GT motion regions

(d) Observation fusion (e) Decision fusion (f) L3MRF-δ∗0
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truth

Fig. 12. Evaluation of the proposed L3MRF model versus different fusion approaches. Methods are described in Section -A.
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Fig. 13. Numerical comparison of the proposed model (L3MRF) to different information fusion techniques with the same feature selection.


